scholarly journals Application of Box-Behnken design with response surface methodology for modeling and optimizing ultrasonic oxidation of arsenite with H2O2

2014 ◽  
Vol 12 (2) ◽  
pp. 164-172 ◽  
Author(s):  
Pengpeng Qiu ◽  
Mingcan Cui ◽  
Kyounglim Kang ◽  
Beomguk Park ◽  
Yonggyu Son ◽  
...  

AbstractA combined ultrasound (US)/H2O2 process was used to oxidize arsenite to arsenate, yielding a synergistic effect value of 1.26. This showed that the combined process could be an effective method of oxidizing arsenite, instead of using either ultrasonic or H2O2 oxidation processes. This combined process was successfully modeled and optimized using a Box-Behnken design with response surface methodology (RSM). The effects of the US power density, the initial concentration of arsenite, and the H2O2 concentration on the sonochemical oxidation efficiency of arsenite were investigated. Analysis of variance indicated that the proposed quadratic model successfully interpreted the experimental data with coefficients of determination of R 2 = 0.95 and adjusted R 2 = 0.91. Through this model, we can predict and control the oxidation efficiency under different conditions. Furthermore, the optimal conditions for the oxidation of arsenite were found to be a US power density of 233.26 W L−1, an initial arsenite concentration of 0.5 mg L−1, and an H2O2 concentration of 74.29 mg L−1. The predicted oxidation efficiency obtained from the RSM under the optimal conditions was 88.95%. A confirmation test of the optimal conditions verified the validity of the model, yielding an oxidation efficiency of 90.1%.

2020 ◽  
Vol 27 (2) ◽  
pp. 47-56
Author(s):  
A.O. Okewale ◽  
O.A. Adesina ◽  
B.H. Akpeji

Effect of Terminalia catappa leaves (TCL) extract in inhibiting corrosion of mild steel was investigated. In order to obtain the maximum inhibition efficiency, optimization of the process variables affecting corrosion of mild steel was carried out using the Box – Behnken Design plan and desirability function of Response Surface Methodology (RSM). The three parameters - varied include; TCL concentration (inhibitor), immersion time, and temperature and there effects in corrosion inhibition were established. The optimum conditions predicted from the quadratic model were inhibitor’s concentratrion (0.39 g/l), exposure time (8.68 hours), and temperature (36.06 oC) with the inhibition efficiency of 91.95 %. The data fitted well to the quadratic model which was validated. Adsorption of the extract’s component on the mild steel was responsible for the inhibitory effect of the TCL extract.The results showed that 97.92% of the total variation in the inhibition efficiency of TCL can be connected to the variables studied. Keywords: Mild steel, acid, Terminalia catappa, Corrosion, Response surface methodology (RSM).


2013 ◽  
Vol 800 ◽  
pp. 537-545
Author(s):  
Jian Ping Xu ◽  
Zhi Huang ◽  
Yan Ling Gao

In this study, the Box–Behnken design matrix and response surface methodology (RSM) have been applied in the experiments to evaluate the interactive effects of four most important operating variables: pH (2.0–4.0), temperature (30–40°C ),iron/carbon ratio(1/2–3/2)and iron carbon amounts (2-4) on the removal of Pb (II), Cu(II),Zn (II) and Cd (II) ions in acid mine drainage with micro-electrolysis (ME) . The total 29 experiments were conducted in the present study for the construction of a quadratic model. The independent variables have significant value 0.0001, which indicates the importance of these variables in the ME process. The values of “Prob > F” less than 0.0500 indicate that model terms are significant for the removal of Cr (VI), Ni (II) and Zn (II) ions. The regression equation coefficients were calculated and the data fitted to a second-order polynomial equation for removal of Pb (II), Cu(II),Zn (II) and Cd (II) ions with ME.


2014 ◽  
Vol 955-959 ◽  
pp. 2653-2657 ◽  
Author(s):  
Mi Jia Zhu ◽  
Hai Jun Liu ◽  
Jun Yao ◽  
Qing Hua Luo

The abandoned oil-based drilling fluid is a kind of water-in-oil system with high oil content, which has a significant recovery value. The effects of demulsifier dosage, heating temperature, ultrasonic time and centrifuge speed on the oil recycle were investigated in the chemical demulsification-ultrasonic treatment of oil-based drilling fluid. From the results of the experiment, BSF-L62 was a suitable reagent with the highest oil removal rate among the selected demulsifiers. The main influencing factors were optimized using the Response Surface Methodology based on Box-Behnken design. The oil removal rate was up to 76.9% under the optimal conditions of demulsifier dosage of 250 mg/L, heating temperature of 70 °C, ultrasonic time of 12.5 min and centrifuge speed of 7000 r/min.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1093 ◽  
Author(s):  
Songtao Shen ◽  
Qing Wang ◽  
Jiancheng Shu ◽  
Li Ma ◽  
Li Chen ◽  
...  

For optimizing the reaction conditions of 2-methyl-6-ethylaniline (MEA) degradation catalyzed by horseradish peroxidase (HRP), a response surface methodology with three factors and three levels was used in this research to establish a regression model, a ternary quadratic polynomial, in order to analyze temperature, H2O2 concentration and pH effects on MEA removal efficiency. The results showed that the regression model was significant (p < 0.0001), fitted well with experimental data and had a high degree of reliability and accuracy, and the data were reasonable with low errors. By analyzing interactions and solving the regression model, the maximum MEA removal efficiency was 97.90%, and the optimal conditions were defined as follows: pH 5.02, H2O2 concentration 13.41mM, and temperature 30.95 °C. Under the optimal conditions, the average MEA removal efficiency obtained from the experiments was 97.56%. This research can provide reference for the treatment of actual acetochlor industrial wastewater.


2010 ◽  
Vol 8 (5) ◽  
pp. 1069-1077 ◽  
Author(s):  
Jalal Parsa ◽  
Mahmood Abbasi

AbstractThe nanocatalyst-assisted sonodegradation of Basic Blue 41 (BB41) dye in aqueous medium was modeled and optimized using response surface method (RSM) based on Box-Behnken design. The studied variables included pH, initial dye concentration, H2O2 concentration and sonolysis time while each factor varied at three levels: Low level (−1), Medium level (0) and High level (+1). The ultrasound -assisted degradation was well described by developing quadratic model with correlation value squared (R2) of 0.9114. Factor effects along with interaction effects were evaluated. The graphical optimization step was conducted to achieve the best experimental condition in dye removal. pH, H2O2 concentration and initial dye concentration of the reaction were investigated. It was recognized that at lower pH values the dye removal rate decreased. However, dye removal rate increased (82.5%) by increasing the concentration of H2O2 and by lowering the initial dye concentration.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3062 ◽  
Author(s):  
Xianjin Hu ◽  
Kun Yang ◽  
Cheng Zhang

Polymer optical fibers (POFs) were used for preparing side-emitting polymer optical fibers (SPOFs), which were processed with acetone and n-hexane combined in selected proportions by a solvent treatment method. The effects of the volume ratio of acetone to n-hexane and treatment time on response variable factors were investigated. The center composite design (CCD) based response surface methodology (RSM), a quadratic model, and a two-factor interaction model were developed to relate the preparation variables of illumination intensity, breaking strength, and rigidity. According to analysis of variance (ANOVA), the factors affecting the optimization of each response factor were determined. The predicted values after process optimization were found to be highly similar to the experimental values. The optimal conditions for the preparation of SPOF were as follows: the volume ratio of acetone to hexane was 1.703, and the treatment time was 2.716 s. The three response variables of SPOF prepared under the optimal conditions were: illumination intensity 19.339 mV, breaking strength 5.707 N, and rigidity 572.013 N·mm2.


Author(s):  
Cuizhen Sun ◽  
Guoxiu Wang ◽  
Caijuan Sun ◽  
Rupeng Liu ◽  
Zhibin Zhang ◽  
...  

Abstract Iron contamination, causing staining, discoloration and bad taste, is a worldwide water problem. It is necessary to focus on iron oxidation from the water. This work aims to develop nanobubbles (NBs) technology to remove iron (Fe2+) from aqueous solutions. In batch experiments, the effects of initial Fe2+ concentration, pH, and aeration pressure on the Fe2+ oxidation efficiency were carried out. The results showed that initial concentrations, pH and aeration pressure are significant parameters influencing Fe2+ oxidation. On the basis of single factor experiments, the Box–Behnken design was used to optimize the Fe2+ oxidation conditions with NBs using three parameters (Fe2+ concentration, pH, and aeration pressure) under the response surface methodology. The optimal Fe2+ oxidation was achieved when the initial concentration was 13.7 mg·L−1, pH = 9, and the aeration pressure was 290 kPa. The regression model of Fe2+ oxidation rate under optimized test conditions is accurate and effective. The results showed that the combination of single factor test and response surface optimization can be used to optimize the Fe2+ oxidation process with NBs. It is concluded that NBs technology is promising for Fe2+ oxidation from water.


2019 ◽  
pp. 49-59
Author(s):  
Nu Linh Giang Ton ◽  
Thi Hoai Nguyen ◽  
Quoc Hung Vo

Avocado peel has been considered as a potential source of natural antioxidants in which phenolics are among the most important compounds. Therefore, this study aims to optimize the extraction process of phenolics using response surface methodology and evaluate the corresponding antioxidant activity. From the quadratic model, the optimal condition was determined including the ethanol concentration 54.55% (v/v), the solvent/solute ratio 71.82/1 (mL/g), temperature 53.03 oC and extraction time 99.09 min. The total phenolic content and the total antioxidant capacity at this condition with minor modifications were 26,74 ± 0,04 (mg GAE/g DW) and 188.06 ± 1.41 (mg AAE/g DW), respectively. The significant correlation between total phenolic content and total antioxidant capacity was also confirmed. Key words: response surface methodology, central composite rotatable design, total phenolic content, total antioxidant capacity, avocado peel


2017 ◽  
Vol 68 (2) ◽  
pp. 331-336
Author(s):  
Gabriela Isopencu ◽  
Mirela Marfa ◽  
Iuliana Jipa ◽  
Marta Stroescu ◽  
Anicuta Stoica Guzun ◽  
...  

Nigella sativa, also known as black cumin, an annual herbaceous plant growing especially in Mediterranean countries, has recently gained considerable interest not only for its use as spice and condiment but also for its healthy properties of the fixed and essential oil and its potential as a biofuel. Nigella sativa seeds fixed oil, due to its high content in linoleic acid followed by oleic and palmitic acid, could be beneficial to human health. The objective of this study is to determine the optimum conditions for the solvent extraction of Nigella sativa seeds fixed oil using a three-level, three-factor Box-Behnken design (BBD) under response surface methodology (RSM). The obtained experimental data, fitted by a second-order polynomial equation were analysed by Pareto analysis of variance (ANOVA). From a total of 10 coefficients of the statistical model only 5 are important. The obtained experimental values agreed with the predicted ones.


Sign in / Sign up

Export Citation Format

Share Document