scholarly journals The chiral and deconfinement phase transitions

Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Fukun Xu ◽  
Mei Huang

AbstractBy introducing the dressed Polayakov loop or dual chiral condensate as a candidate order parameter to describe the deconfinement phase transition for light flavors, we discuss the interplay between the chiral and deconfinement phase transitions, and propose the possible QCD phase diagram at finite temperature and density. We also introduce a dynamical gluodynamic model with dimension-2 gluon condensate, which can describe the color electric deconfinement as well as the color magnetic confinement.


2018 ◽  
Vol 182 ◽  
pp. 02021 ◽  
Author(s):  
K.A. Bugaev ◽  
A.I. Ivanytskyi ◽  
V.V. Sagun ◽  
G.M. Zinovjev ◽  
E.G. Nikonov ◽  
...  

In this contributions we discuss the novel version of hadron resonance gas model which is based on the induced surface tension concept. Also we present new arguments in favor of a hypothesis that the chiral symmetry restoration transition in central nuclear collisions may occur at the center of mass energies 4.3-4.9 GeV and that the deconfinement phase transition may occur at the center of mass energies 8.8-9.2 GeV. These arguments are based on the unique thermostatic properties of the mixed phase and the ones of an exponential mass spectrum of hadrons.



Author(s):  
L. T. Pawlicki ◽  
R. M. Siegoczyński ◽  
S. Ptasznik ◽  
K. Marszałek

AbstractThe main purpose of the experiment was a thermodynamic research with use of the electric methods chosen. The substance examined was olive oil. The paper presents the resistance, capacitive reactance, relative permittivity and resistivity of olive. Compression was applied with two mean velocities up to 450 MPa. The results were shown as functions of pressure and time and depicted on the impedance phase diagram. The three first order phase transitions have been detected. All the changes in material parameters were observed during phase transitions. The material parameters measured turned out to be the much more sensitive long-time phase transition factors than temperature. The values of material parameters and their dependence on pressure and time were compared with the molecular structure, arrangement of molecules and interactions between them. Knowledge about olive oil parameters change with pressure and its phase transitions is very important for olive oil production and conservation.



2001 ◽  
Vol 16 (17) ◽  
pp. 1129-1138 ◽  
Author(s):  
M. SADZIKOWSKI

The Nambu–Bogoliubov–de Gennes method is applied to the problem of superconducting QCD. The effective quark–quark interaction is described within the framework of the Nambu–Jona-Lasinio model. The details of the phase diagram are given as a function of the strength of the quark–quark coupling constant G′. It is found that there is no superconducting phase transition when one uses the relation between the coupling constants G′ and G of the Nambu–Jona-Lasinio model which follows from the Fierz transformation. However, for other values of G′ one can find a rich phase structure containing both the chiral and the superconducting phase transitions.



2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Abdel Nasser Tawfik ◽  
Niseem Magdy

Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model and Polyakov linear sigma-model (PLSM) has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM) a gluonic sector is integrated into LSM. The hadron resonance gas (HRG) model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.



2017 ◽  
Vol 45 ◽  
pp. 1760059
Author(s):  
Clebson A. Graeff ◽  
Débora P. Menezes

We analyse the hadron/quark phase transition described by the Nambu-Jona-Lasinio (NJL) model [quark phase] and the extended Nambu-Jona-Lasinio model (eNJL) [hadron phase]. While the original formulation of the NJL model is not capable of describing hadronic properties due to its lack of confinement, it can be extended with a scalar-vector interaction so it exhibits this property, the so-called eNJL model. As part of this analysis, we obtain the equations of state within the SU(2) versions of both models for the hadron and the quark phases and determine the binodal surface.



2019 ◽  
Vol 204 ◽  
pp. 03001 ◽  
Author(s):  
K. A. Bugaev ◽  
A. I. Ivanytskyi ◽  
V. V. Sagun ◽  
B. E. Grinyuk ◽  
D. O. Savchenko ◽  
...  

The chemical freeze-out irregularities found with the most advanced hadron resonance gas model and possible signals of two QCD phase transitions are discussed. We have found that the center-of-mass collision energy range of tricritical endpoint of QCD phase diagram is [9; 9.2] GeV which is consistent both with the QCD inspired exactly solvable model and experimental findings.



2019 ◽  
Vol 99 (3) ◽  
Author(s):  
Zhen Fang ◽  
Yue-Liang Wu ◽  
Lin Zhang


2004 ◽  
Vol 15 (08) ◽  
pp. 1095-1103 ◽  
Author(s):  
RECEP ERYIĞIT ◽  
RESUL ERYIĞIT ◽  
YIĞIT GÜNDÜÇ

We study ground state pairwise entanglement within one-dimensional spin-1/2 antiferromagnetic J1–J2 model with competing interactions. Contrary to some claims we found that frustration does not increase entanglement. Concurrence of nearest and next nearest neighbors are found to show abrupt change at phase transition points. We also show that the concurrence can be used to classify the phase diagram of the model in anisotropy–frustration plane.



2009 ◽  
Vol 23 (20n21) ◽  
pp. 3939-3950
Author(s):  
PETTER MINNHAGEN ◽  
SEBASTIAN BERNHARDSSON ◽  
BEOM JUN KIM

The 2D Fully Frustrated XY(FFXY) class of models is shown to contain a new groundstate in addition to the checkerboard groundstate of the standard 2D XY model. The spin configuration of this additional groundstate is obtained and its connection to a broken Z2-symmetry explained. This means that the class of 2D FFXY models belongs within a U(1) ⊗ Z2 ⊗ Z2-symmetry phase-transition representation. The phase diagram is reviewed and the central charges of the four multicritical points described. The implications for the standard 2D FFXY-model are discussed and elucidated, in particular with respect to the long standing controversy concerning the phase transitions of the standard 2D FFXY-model.



Sign in / Sign up

Export Citation Format

Share Document