Variation in the uptake of Arsenic, Cadmium, Lead, and Zinc by different species of willows Salix spp. grown in contaminated soils

2007 ◽  
Vol 2 (2) ◽  
pp. 254-275 ◽  
Author(s):  
Pavel Tlustoš ◽  
Jir̆ina Száková ◽  
Markéta Vysloužilová ◽  
Daniela Pavlíková ◽  
Jan Weger ◽  
...  

AbstractThe experiment assessed the variability of in seven clones of willow plants of high biomass production (Salix smithiana S-218, Salix smithiana S-150, Salix viminalis S-519, Salix alba S-464, Salix ’Pyramidalis’ S-141, Salix dasyclados S-406, Salix rubens S-391). They were planted in a pots for three vegetation periods in three soils differing in the total content of risk elements. Comparing the calculated relative decrease of total metal contents in soils, the phytoextraction potential of willows was obtained for cadmium (Cd) and zinc (Zn), moderately contaminated Cambisol and uncontaminated Chernozem, where aboveground biomass removed about 30% Cd and 5% Zn of the total element content, respectively. The clones showed variability in removing Cd and Zn, depending on soil type and contamination level: S. smithiana (S-150) and S. rubens (S-391) demonstrated the highest phytoextraction effect for Cd and Zn. For lead (Pb) and arsenic (As), the ability to accumulate the aboveground biomass of willows was found to be negligible in both soils. The results confirmed that willow plants show promising results for several elements, mainly for mobile ones like cadmium and zinc in moderate levels of contamination. The differences in accumulation among the clones seemed to be affected more by the properties of clones, not by the soil element concentrations or soil properties. However, confirmation and verification of the results in field conditions as well as more detailed investigation of the mechanisms of cadmium uptake in rhizosphere of willow plants will be determined by further research.

2011 ◽  
Vol 49 (No. 12) ◽  
pp. 542-547 ◽  
Author(s):  
M. Vysloužilová ◽  
P. Tlustoš ◽  
J. Száková

The Cd and Zn accumulation and phytoextraction potential of seven willow clones was investigated in a pot experiment for two vegetation periods. Heavily polluted Fluvisol-Litavka, moderately contaminated Cambisol-Pribram, and unpolluted control Chernozem-Suchdol were used. Significant differences were found in Cd and Zn accumulation between the willow clones. Cd and Zn were transferred from roots to aboveground tissues and all tested clones confirmed higher Cd and Zn accumulation in leaves than in twigs. Cd and Zn amounts removed by willow leaves were the highest from the most polluted soil (up to 83% Cd and 71% Zn of total removal). Therefore the harvest of leaves is necessary if willows are planted for heavy metal phytoextraction. Although the extremely high Zn contamination of Fluvisol-Litavka significantly reduced biomass production, willows planted in this soil showed the highest Zn removal because of extremely high Zn accumulation (max. 5061 ppm in leaves). Clones planted in moderately contaminated soil achieved the highest Cd removal. Clones showed different abilities to remove Cd and Zn, which was dependent on soil type and contamination level. Remediation factors were determined less than 1% for Zn in the heavily polluted soil and also unsatisfactory for Cd. However, it was shown that willows were suitable phytoextractors of moderately contaminated soil. About 20% of Cd and 4% of Zn were removed by harvested biomass from the total content of soil after two vegetation periods.


2021 ◽  
Vol 11 (24) ◽  
pp. 11822
Author(s):  
Marija Đurić ◽  
Primož Oprčkal ◽  
Vesna Zalar Serjun ◽  
Alenka Mauko Pranjić ◽  
Janez Ščančar ◽  
...  

Paper-ash is used for remediation of heavily contaminated soils with metals, but remediation efficiency after longer periods has not been reported. To gain insights into the mechanisms of immobilization of cadmium (Cd), lead (Pb), and znic (Zn), a study was performed in the laboratory experiment in uncontaminated, artificially contaminated, and remediated soils, and these soils treated with sulfate, to mimic conditions in contaminated soil from zinc smelter site. Remediation was performed by mixing contaminated soil with paper-ash to immobilize Cd, Pb, and Zn in the geotechnical composite. Partitioning of Cd, Pb, and Zn was studied over one year in seven-time intervals applying the sequential extraction procedure and complementary X-ray diffraction analyses. This methodological approach enabled us to follow the redistribution of Cd, Pb, and Zn over time, thus, to studying immobilization mechanisms and assessing the remediation efficiency and stability of newly formed mineral phases. Cd, Pb, and Zn were effectively immobilized by precipitation of insoluble hydroxides after the addition of paper-ash and by the carbonization process in insoluble carbonate minerals. After remediation, Cd, Pb, and Zn concentrations in the water-soluble fraction were well below the limiting values for inertness: Cd by 100 times, Pb by 125 times, and Zn by 10 times. Sulfate treatment did not influence the remediation efficiency. Experimental data confirmed the high remediation efficiency and stability of insoluble Cd, Pb, and Zn mineral phases in geotechnical composites.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 879
Author(s):  
Elżbieta Rolka ◽  
Mirosław Wyszkowski

The research was based on a pot experiment in which the impact of increasing Cd, Zn and Pb doses on the content of available trace elements in soil was compared. Seven series of trials were designed: 1 (Cd), 2 (Pb), 3 (Zn), 4 (Cd + Pb), 5 (Cd + Zn), 6 (Pb + Zn), 7 (Cd + Pb + Zn). Aside from the control one (without the metals), three increasing levels of contamination were considered within each series. Mobile forms of trace elements (Cd, Pb, Zn, Fe, Mn, Cu, Ni, Co, and Cr) in soil were determined, in addition to which selected physicochemical soil properties—reaction (pH), salinity (EC), hydrolytic acidity (HAC), total exchange bases (TEB)—were identified while cation exchange capacity (CEC), base saturation (BS) and availability factor (AF) were calculated. The application of Cd and Pb to soil resulted in an increase in the share of potentially available forms of these metals in their total content. The availability factor (AF) in the pots polluted with these metals was higher than in the control, in the range 17.5–20.0% for Cd, and 62.8–71.5% for Pb. In turn, the share of Zn mobile forms was comparable in most experimental objects, oscillating around 30%. Moreover, addition to soil of Cd, Pb and Zn usually caused a significant decrease in the content of available forms of Fe, Mn and Cu, and resulted in significantly higher content of available forms of Cr in the soil.


2021 ◽  
Vol 13 (10) ◽  
pp. 5482
Author(s):  
Hans Bachmaier ◽  
Daniel Kuptz ◽  
Hans Hartmann

Ashes from biomass heat (and power) plants that apply untreated woody biofuels may be suitable for use as fertilizers if certain requirements regarding pollutant and nutrient contents are met. The aim of this study was to examine if both bottom and cyclone ashes from 17 Bavarian heating plants and one ash collection depot are suitable as fertilizers (n = 50). The range and average values of relevant nutrients and pollutants in the ashes were analyzed and evaluated for conformity with the German Fertilizer Ordinance (DüMV). Approximately 30% of the bottom ashes directly complied with the heavy metal limits of the Fertilizer Ordinance. The limits were exceeded for chromium(VI) (62%), cadmium (12%) and lead (4%). If chromium(VI) could be reduced by suitable treatment, 85% of the bottom ashes would comply with the required limit values. Cyclone ashes were high in cadmium, lead, and zinc. The analysis of the main nutrients showed high values for potassium and calcium in bottom ashes, but also relevant amounts of phosphorus, making them suitable as fertilizers if pollutant limits are met. Quality assurance systems should be applied at biomass heating plants to improve ash quality if wood ashes are used as fertilizers in agriculture.


1996 ◽  
Vol 25 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Anna Chlopecka ◽  
J. R. Bacon ◽  
M. J. Wilson ◽  
J. Kay

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Francisco Ferniza-García ◽  
Araceli Amaya-Chávez ◽  
Gabriela Roa-Morales ◽  
Carlos E. Barrera-Díaz

This study presents the results of a coupled electrocoagulation-phytoremediation treatment for the reduction of copper, cadmium, lead, and zinc, present in aqueous solution. The electrocoagulation was carried out in a batch reactor using aluminum electrodes in parallel arrangement; the optimal conditions were current density of 8 mA/cm2 and operating time of 180 minutes. For phytoremediation the macrophytes, Typha latifolia L., were used during seven days of treatment. The results indicated that the coupled treatment reduced metal concentrations by 99.2% Cu, 81.3% Cd, and 99.4% Pb, while Zn increased due to the natural concentrations of the plant used.


2015 ◽  
Vol 1088 ◽  
pp. 200-205
Author(s):  
Lin Yu ◽  
Dong Wei Li

In this paper analysed the forms of heavy metals (Zn Pb Cd and As) of the Smelting Slag for Lead and Zinc,using BCR sequential extraction. Different chemical morphological of heavy metals have different activity and harmfulness. Migration and Utilization of heavy metals were decided by the existent form of heavy metals in the soil,which influenced Bioactivity and Toxicity. The results show that the main forms of Zn and Cd are Oxidizable and Residual fraction, and Pb mainly occurred in Oxidizable and Reducible fraction. however, As mainly occurred in Residual fraction, which the percentage of reachs 99.56%. According to the percentage of fractions extracted in total content (As is 0.44%, Zn is 14.7%, Pb is 85.98%, Cd is 48.86%),the latent ecological risk of heavy metals varied in the descending order of,Pb Cd Zn and As.


Sign in / Sign up

Export Citation Format

Share Document