scholarly journals The influence of tin compounds on the dynamic properties of liposome membranes: A study using the ESR method

Author(s):  
Dariusz Man ◽  
Marian Podolak ◽  
Grzegorz Engel

AbstractThe influence of organic and inorganic compounds of tin on the dynamic properties of liposome membranes obtained in the process of dipalmitoylphosphatidylcholine (DPPC) sonication in distilled water was investigated. This was carried out by means of the spin ESR probe method. The probes were selected in such a way as to penetrate different areas of the membrane (a TEMPO probe, 5-DOXYL stearic acid, 16-DOXYL stearic acid). Four compounds of tin were chosen: three organic ones, (CH3)4Sn, (C2H5)4Sn and (C3H7)3SnCl, and one inorganic one, SnCl2. The investigated compounds were added to a liposome dispersion, which was prepared prior to that. The concentration of the admixture was changed within the values from 0 to 10%-mole in proportion to DPPC. The studies indicated that the chlorides of tin display the highest activity in their interaction with liposome membranes. Since these compounds have ionic form in a water solution, the obtained result can mean that this form of admixture has a considerable influence on its activity. Furthermore, it was found that there is a slightly stronger influence of tin compounds with a longer hydrocarbon chain on changes in the probes’ spectroscopic parameters.

2007 ◽  
Vol 62 (5-6) ◽  
pp. 427-432 ◽  
Author(s):  
Dariusz Man ◽  
Marian Podolak

This work is a continuation of earlier research concerning the influence of tin compounds on the dynamic properties of liposome membranes produced with lecithin hen egg yolks (EYL). The experiments were carried out at room temperature (about 25 ∞C). Four tin compounds were chosen, including three organic ones, (CH3)4Sn, (C2H5)4Sn and (C3H7)3SnCl, and one inorganic, SnCl2. The investigated compounds were admixed to water dispersions of liposomes. The content of the admixture changed within the range 0 mol-% to 11mol-% in proportion to EYL. Two spin probes were used in the experiment: 2,2,6,6-tetramethylpiperidine- 1-oxyl (TEMPO) and 2-ethyl-2-(15-methoxy-15-oxopentadecyl)-4,4-dimethyl-3-oxazolidinyloxyl (16-DOXYL-stearic acid), which penetrated through different areas of the membrane. It was found that tin compounds containing chlorine were the most active in interaction with liposome membranes. In the case of (C3H7)3SnCl, after exceeding 4% admixture content, an additional line appeared in the spectrum of the TEMPO probe which can be a result of formation of domain structures in the membranes of the studied liposomes. Compounds containing chlorine are of ionized form in water solution. The obtained results can thus mean that the activity of admixtures can be seriously influenced by their ionic character. In case of an admixture of non-ionic compounds the compound with a longer hydrocarbon chain displayed a slightly stronger effect on the spectroscopic parameters of the probes.


1961 ◽  
Vol 39 (11) ◽  
pp. 2360-2370 ◽  
Author(s):  
Marvin J. Albinak ◽  
Dinesh C. Bhatnagar ◽  
Stanley Kirschner ◽  
Anthony J. Sonnessa

Considerable interest in the optical rotatory dispersion of asymmetric organic and inorganic compounds and its application to the elucidation of their structures has arisen in recent years. In order to study the effects of optically inactive ions on the rotatory dispersion of asymmetric complex ions, a series of salts was prepared of two active cations: levo cis-oxalato-bis(ethylenediamine)cobalt(III) and levo tris(ethylenediamine)chromium(III). Salts prepared included the fluoride, chloride, bromide, iodide, tetrafluoroborate, perchlorate, sulphate, and phosphate. In order to study this effect on an optically active anion, the lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, and barium salts of dextro and levo tris(oxalato)rhodate(III) were also prepared. Rotatory dispersion curves and absorption spectra were obtained for all salts in water solution. A comparison of the curves within a series showed definite trends in changes of wavelength and intensity of maxima of rotation and absorption with changes in both the ionic charge/size ratio (ionic potential) and polarizability of the optically inactive ions.


2013 ◽  
Vol 41 (4) ◽  
pp. 276-286 ◽  
Author(s):  
Jae-Young Kim ◽  
Shinyoung Oh ◽  
Hyewon Hwang ◽  
Yoonho Moon ◽  
Joon Weon Choi

Author(s):  
Gustavo J. Molina ◽  
Fnu Aktaruzzaman ◽  
Valentin Soloiu ◽  
Mosfequr Rahman

Nanofluids are suspensions of nanoparticles in ordinary coolants, but their tribological effects on heat-exchanger materials are unknown. Previous research has explored wear from distilled-water-base nanofluids only, while most engine-coolants are alcohol solutions in water. This article presents testing of aluminum and copper by jet impingement of 50%-ethylene-glycol in water solution and of its 2%-alumina nanofluid. The effects are investigated of nanoparticle addition on the anticorrosion protection provided by ethylene glycol. The observed modifications showed that ethylene-glycol in water nanofluid led to wear patterns that were different than those obtained with the base-fluid; nanoalumina addition enhanced erosion and corrosion on aluminum and copper. Comparing the effects of ethylene glycol and its nanofluid solutions to those from same tests performed with distilled-water and its nanofluid suggests that nanopowders can substantially enhance wear by decreasing the anticorrosion action of ethylene glycol by a synergetic mechanism of erosion-corrosion


2019 ◽  
Vol 9 (2) ◽  
pp. 278-284
Author(s):  
Mohammad Sabet ◽  
Marziyeh Mohammadi ◽  
Fatemeh Googhari

Background: Due to unique chemical and physical properties and potential application in many fields, nanostructured materials have attracted many attentions. Cadmium sulfide (CdS) is a semiconductor that has a wide band gap of 2.42 eV at room temperature and can be served in solar cells and photoluminescence devices. Cadmium sulfide (CdS) is a kind of attractive semiconductor material, and it is now widely used for optoelectronic applications. CdS nano and microstructures can be synthesized via different chemical methods such as microwave-solvothermal synthesis, surfactant-ligand coassisting solvothermal method and hydrothermal route. Also different morphologies of this semiconductor such as dendrites, nanorods, sphere-like, flakes, nanowires, flower-like shape triangular and hexagonal plates, were synthesized. Methods: To synthesis of the nanocomposite, a simple co-precipitation method was served. In briefly, 0.1 g of Pb(NO3)2 was dissolved in the distilled water (Solution 1). Also different aqueous solutions were made from dissolving different mole ratio of Cd(NO3)2.6H2O respect to the lead source in the water (Solution 2). Two solutions were mixed together under vigorous stirring and then S2- solution (0.02 g thiourea in the water) was added to the Pb2+/Cd2+ solution. After that 0.1 g of CTAB as surfactant was added to the final solution. Finally to the synthesis of both sulfide and oxide nanostructures, NaOH solution was added to the prepared solution to obtain pH= 10. Distilled water and absolute ethanol were used to wash the obtained precipitate and then it dried at 80 °C for 8 h. Results: From the XRD pattern it was found that the peaks placed at 24.9°, 27°, 44.1°, 48°, 52°, 54°, 57.8°, 66.8°, 71.2° are associated to CdS compound with hexagonal phase (JCPDS=00-001-0780) that belong to (100), (002), (110), (103), (112), (201), (202), (203), (211) Miller indices respectively. The Other peaks belong to PbS with hexagonal phase (JCPDS=01-078-1897), and CdO with cubic phase (JCPDS=00-001-1049). From SEM images, it was found by choosing the mole ratio to 1:1, very small and uniform particles were achieved. By increasing Pb2+/Cd2+ mole ratio to 1:2, very tiny particles aggregated together were achieved. Conclusion: The results showed that the product can adsorb extra 80% of heavy metal ions from the water. So it can be said that the nanocomposite can be used in the water treatment due to its high photocatalytic and surface adsorption activities. In other words, it can remove heavy metals from the water and also decompose organic pollutions.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Ryta Łagocka ◽  
Katarzyna Jakubowska ◽  
Dariusz Chlubek ◽  
Jadwiga Buczkowska-Radlińska

Objective. This study aimed to evaluate triethylene glycol dimethacrylate (TEGDMA) elution from SDR bulk-fill composite.Methods. Three groups of samples were prepared, including samples polymerized in a 4 mm layer for 20 s, in a 4 mm layer for 40 s, and in a 2 mm layer for 20 s. Elution of TEGDMA into 100% ethanol, a 75% ethanol/water solution, and distilled water was studied. The TEGDMA concentration was measured using HPLC.Results. The TEGDMA concentration decreased in the following order: 100% ethanol > 75% ethanol > distilled water. Doubling the energy delivered to the 4 mm thick sample caused decrease (p<0.05) in TEGDMA elution to distilled water. In ethanol solutions, the energy increase had no influence on TEGDMA elution. Decreasing the sample thickness resulted in decrease (p<0.05) in TEGDMA elution for all the solutions.Conclusions. The concentration of eluted TEGDMA and the elution time were both strongly affected by the hydrophobicity of the solvent. Doubling the energy delivered to the 4 mm thick sample did not decrease the elution of TEGDMA but did decrease the amount of the monomer available to less aggressive solvents. Elution of TEGDMA was also correlated with the exposed sample surface area.Clinical Relevance. Decreasing the SDR layer thickness decreases TEGDMA elution.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5999-6011
Author(s):  
Zatil Hazrati Kamaruddin ◽  
S. M. Sapuan ◽  
Mohd Zuhri Mohamed Yusoff ◽  
Ridhwan Jumaidin

Studies have revealed that Dioscorea hispida tubers contain a poisonous substance called alkaloid dioscorine. The method for removing alkaloid dioscorine in Dioscorea hispida is explored in this research through a soaking process. The tubers were peeled, washed, sliced, and soaked for 5 days in either 1.0 M sodium chloride (NaCl) or distilled water. The aim of this study was to firstly identify the amount of toxic dioscorine remaining after soaking for 5 days, and then determine the best solution for removing dioscorine compounds in the tubers that were obtained from a tropical area in Peninsular Malaysia. The liquid chromatography electrospray ionization mass spectrometric (LC-ESI-MS) systems were used to identify the presence of alkaloid dioscorine compounds within Dioscorea hispida tubers. The analysis showed that no dioscorine compounds were present in day 5 for samples soaked in the NaCl solution. However, the relative abundance in the distilled water solution at day 5 was 281000, indicating a 95% decrease of the relative abundance value of the dioscorine compounds. This work aimed to determine the minimum days needed to remove the poisonous element before Dioscorea hispida tubers could be used for food consumption or for any other applications.


Sign in / Sign up

Export Citation Format

Share Document