Salting-out chromatography—VIEffect of the length of the hydrocarbon chain, the eluent salt, and the crosslinking and ionic form of the resin

Talanta ◽  
1960 ◽  
Vol 4 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Arthur Breyer ◽  
Wm. Rieman III
Author(s):  
Dariusz Man ◽  
Marian Podolak ◽  
Grzegorz Engel

AbstractThe influence of organic and inorganic compounds of tin on the dynamic properties of liposome membranes obtained in the process of dipalmitoylphosphatidylcholine (DPPC) sonication in distilled water was investigated. This was carried out by means of the spin ESR probe method. The probes were selected in such a way as to penetrate different areas of the membrane (a TEMPO probe, 5-DOXYL stearic acid, 16-DOXYL stearic acid). Four compounds of tin were chosen: three organic ones, (CH3)4Sn, (C2H5)4Sn and (C3H7)3SnCl, and one inorganic one, SnCl2. The investigated compounds were added to a liposome dispersion, which was prepared prior to that. The concentration of the admixture was changed within the values from 0 to 10%-mole in proportion to DPPC. The studies indicated that the chlorides of tin display the highest activity in their interaction with liposome membranes. Since these compounds have ionic form in a water solution, the obtained result can mean that this form of admixture has a considerable influence on its activity. Furthermore, it was found that there is a slightly stronger influence of tin compounds with a longer hydrocarbon chain on changes in the probes’ spectroscopic parameters.


1960 ◽  
Vol 04 (02) ◽  
pp. 253-260 ◽  
Author(s):  
Franco Gobbi

SummaryThe fractionation properties of human Factor VIII (antihaemophilic factor, AHF, antihaemophilic globulin) have been studied using a plasma of congenital afibrinogenaemia as a starting material.From a fibrinogen-free plasma, Factor VIII does not precipitate with ethanol at a final concentration of 8%; on the contrary the maximum yield is reached at an ethanol concentration of 25%.With a precipitation method carried out by a one to ten dilution of plasma with distilled water and acidification by N/10 hydrochloric acid to a pFI 5.2, Factor VIII does not precipitate with the euglobulin fraction; when normal plasma is used, such a precipitation is almost complete.With the salting-out fractionation method by ammonium sulphate, Factor VIII precipitates at a concentration between 25 and 33% of saturation either from fibrinogen-free and from normal human plasma.A non-specific thromboplastic activity appears in the fractions prepared by every method. This activity, which is probably due to the activation of seric accelerators, is easily removed by Al(OH)s adsorption. Thus, in order to insure the specificity of Factor VIII assays, the preliminary adsorption of the fractions is indispensable before testing their antihaemophilic activity.Fibrinogen and Factor VIII have different and definite precipitation patterns. When these two factors are associated the fractionation properties of AHF appear quite modified, showing a close similarity to those of fibrinogen. This fact can explain the technical difficulties encountered in the attempt to purify the antihaemophilic factor, and the lack of reproducible procedures for removing fibrinogen without affecting Factor VII.


Author(s):  
Baydaa Hussein ◽  
Zainab A. Aldhaher ◽  
Shahrazad Najem Abdu-Allah ◽  
Adel Hamdan

Background: Biofilm is a bacterial way of life prevalent in the world of microbes; in addition to that it is a source of alarm in the field of health concern. Pseudomonas aeruginosa is a pathogenic bacterium responsible for all opportunistic infections such as chronic and severe. Aim of this study: This paper aims to provide an overview of the promotion of isolates to produce a biofilm in vitro under special circumstances, to expose certain antibiotics to produce phenotypic evaluation of biofilm bacteria. Methods and Materials: Three diverse ways were used to inhibited biofilm formation of P.aeruginosa by effect of phenolic compounds extracts from strawberries. Isolates produced biofilm on agar MacConkey under certain circumstances. Results: The results showed that all isolates were resistant to antibiotics except sensitive to azithromycin (AZM, 15μg), and in this study was conducted on three ways to detect the biofilm produced, has been detected by the biofilm like Tissue culture plate (TCP), Tube method (TM), Congo Red Agar (CRA). These methods gave a clear result of these isolates under study. Active compounds were analyzed in both extracts by Gas Chromatography-mass Spectrometry which indicate High molecular weight compound with a long hydrocarbon chain. Conclusion: Phenolic compounds could behave as bioactive material and can be useful to be used in pharmaceutical synthesis. Phenolic contents which found in leaves and fruits extracts of strawberries shows antibacterial activity against all strains tested by the ability to reduce the production of biofilm formation rate.


2018 ◽  
Vol 84 (11) ◽  
pp. 23-27
Author(s):  
M. I. Degtev ◽  
A. A. Yuminova ◽  
A. S. Maksimov ◽  
A. P. Medvedev

The possibility of using an aqueous stratified system of antipyrine — sulfosalicylic acid — water for the selective isolation of scandium macro- and microquantities for subsequent determination is studied. The proposed extraction system eliminates the usage of toxic organic solvents. The organic phase with a volume of 1.2 to 2.0 ml, resulting from delamination of the aqueous phase containing antipyrine and sulfosalicylic acid is analysed to assess the possibility of using such systems for metal ions extraction. Condition necessary for the formation of such a phase were specified: the ratio of the initial components, their concentration, presence of inorganic salting out agents. The optimum ratio of antipyrine to sulfosalicylic acid is 2:1 at concentrations of 0.6 and 0.3 mol/liter in a volume of the aqueous phase of 10 ml. The obtained phase which consists of antipyrinium sulfosalicylate, free antipyrine and water, quantitatively extracts macro- and microquantities of scandium at pH = 1.54. Macro- and microquantities of yttrium, terbium, lanthanum, ytterbium and gadolinium are not extracted under the aforementioned conditions thus providing selective isolation of scandium from the bases containing yttrium, ytterbium, terbium, lanthanum, and gadolinium.


2012 ◽  
Vol 31 (12) ◽  
pp. 1370-1374
Author(s):  
Wei-feng ZHU ◽  
Da-ya LUO ◽  
Shuo TU ◽  
Xia-li ZHANG ◽  
Ke-min JIE ◽  
...  

1999 ◽  
Vol 40 (9) ◽  
pp. 207-214 ◽  
Author(s):  
J.-P. Croué ◽  
D. Violleau ◽  
C. Bodaire ◽  
B. Legube

The objective of this work was to compare the affinity of well characterized NOM fractions isolated from two surface waters with strong (gel matrix and macroporous matrix) and weak anion exchange resins (AER) using batch experiment conditions. The structural characterization of the fraction of NOM has shown that the higher the hydrophilic character, the lower the C/O atomic ratio, the lower the SUVA, the lower the aromatic carbon content and the lower the molecular weight. In general (not always), strong AER was more efficient to remove DOC than weak AER. For the same water source (Suwannee River), the higher the molecular weight of the NOM fraction, the lower the affinity with AER. Increasing the ionic strength favored the removal of the hydrophobic NOM fraction (“salting out” effect) while increasing the pH apparently reduced the removal of the hydrophilic NOM fraction. Results were discussed in terms of size exclusion, adsorption, anion exchange and also hydrophobic/hydrophilic repulsion.


1979 ◽  
Vol 44 (12) ◽  
pp. 3656-3664
Author(s):  
Oldřich Navrátil ◽  
Jiří Smola ◽  
Rostislav Kolouch

Extraction of hafnium(IV) was studied from solutions of mixtures of perchloric and nitric acids and of perchloric and hydrochloric acids for constant ionic strength, I = 2, 4, 6, or 8, and for cHf 4 . 10-4 mol l-1. The organic phase was constituted by solutions of some acidic or neutral organophosphorus reagents or of 2-thenoyltrifluoroacetone, 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone, or N-benzoyl-N-phenylhydroxylamine in benzene, chloroform, or n-octane. A pronounced synergic extraction of hafnium proceeds only on applying organophosphorus reagents from an aqueous phase whose acidity is not lower than 3M-(HClO4 + HNO3) or 5M-(HClO4 + HCl). The synergic effect was not affected markedly by a variation of the initial concentration of hafnium in the range 1 . 10-8 -4 .10-4 mol l-1, it lowered with increasing initial concentration of the organophosphorus reagent and decreasing concentration of the H+ ions. It is suggested that the hafnium passes into the organic phase in the form of mixed complexes, the salting-out effect of perchloric acid playing an appreciable part.


2008 ◽  
Vol 14 (4) ◽  
pp. 507-514 ◽  
Author(s):  
Arvydas Survila ◽  
Dalia Bražinskienė ◽  
Stasė Kanapeckaitė ◽  
Zenius Mockus ◽  
Vitalija Jasulaitienė

1958 ◽  
Vol 4 (1) ◽  
pp. 49-61 ◽  
Author(s):  
E Pagliardi ◽  
A Vitelli ◽  
G Gaidano

Abstract Salting-out of sera to which known protein fractions had been added was performed, and parallel determinations were performed on the unaltered serum in every case. Two types of phenomena were observed: the added fraction apparently always precipitates in its characteristic range, and the addition of proteins sometimes did not modify the precipitation of the serum proteins, but in other cases determined important changes of the precipitation diagram. The study of these changes proved the occurrence of processes of interaction between the various protein fractions of the sera.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1441
Author(s):  
Moritz P. K. Frewein ◽  
Milka Doktorova ◽  
Frederick A. Heberle ◽  
Haden L. Scott ◽  
Enrico F. Semeraro ◽  
...  

We addressed the frequent occurrence of mixed-chain lipids in biological membranes and their impact on membrane structure by studying several chain-asymmetric phosphatidylcholines and the highly asymmetric milk sphingomyelin. Specifically, we report trans-membrane structures of the corresponding fluid lamellar phases using small-angle X-ray and neutron scattering, which were jointly analyzed in terms of a membrane composition-specific model, including a headgroup hydration shell. Focusing on terminal methyl groups at the bilayer center, we found a linear relation between hydrocarbon chain length mismatch and the methyl-overlap for phosphatidylcholines, and a non-negligible impact of the glycerol backbone-tilting, letting the sn1-chain penetrate deeper into the opposing leaflet by half a CH2 group. That is, penetration-depth differences due to the ester-linked hydrocarbons at the glycerol backbone, previously reported for gel phase structures, also extend to the more relevant physiological fluid phase, but are significantly reduced. Moreover, milk sphingomyelin was found to follow the same linear relationship suggesting a similar tilt of the sphingosine backbone. Complementarily performed molecular dynamics simulations revealed that there is always a part of the lipid tails bending back, even if there is a high interdigitation with the opposing chains. The extent of this back-bending was similar to that in chain symmetric bilayers. For both cases of adaptation to chain length mismatch, chain-asymmetry has a large impact on hydrocarbon chain ordering, inducing disorder in the longer of the two hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document