Nanobacteria associated with mucous intestines of freshwater fishes and tegument of their parasites (Cestoda)

2008 ◽  
Vol 53 (3) ◽  
Author(s):  
Janetta Korneva

AbstractThe teguments of four cestode species (Triaenophorus nodulosus, Proteocephalus torulosus, P. percae, P. cernuae) and the intestines of their freshwater fish hosts (Esox lucius, Barbatula barbatula, Perca fluviatilis, Gymnocephalus cernuus) inhabited by bacteria have been investigated with scanning electron microscopy. Most of the bacteria have sizes very similar to nanobacteria (that is, 0.25–0.3 μm in diameter). At least 4 microbial morphotypes were identified. These observations indicate that the normal indigenous microflora in cestodes and their fish hosts, associated with the digestive transport surfaces and consist of bacteria and nanobacteria.

1982 ◽  
Vol 60 (7) ◽  
pp. 1722-1727 ◽  
Author(s):  
Thomas G. Rand ◽  
Michael Wiles

Morphology of shell valves, shell valve terminal plates, marginal and plate protuberances, sensory tufts, and valvular pores was studied for usefulness in congeneric differentiation of glochidia of Anodonta cataracta Say, 1817 and A. implicata Say, 1829 from two lakes in Nova Scotia. Investigation was with a Cambridge S150 scanning electron microscope operated at 10 kV. Shell valve and terminal plate structures and spatial and size frequency distributions of plate protuberances allow discrimination of these two species of Anodonta. The tubercle-like protuberances probably aid attachment to fish hosts, sensory tufts aid in detection of host and environmental stimuli, and valvular pores may function in nutrition and respiration of glochidia. Possible function of valvular pores was inferred from the observation that they penetrate mantle and valves completely.


2014 ◽  
Vol 89 (2) ◽  
pp. 238-243 ◽  
Author(s):  
J. Behrmann-Godel ◽  
E. Yohannes

AbstractPrevious studies of dietary isotope discrimination have led to the general expectation that a consumer will exhibit enriched stable isotope levels relative to its diet. Parasite–host systems are specific consumer–diet pairs in which the consumer (parasite) feeds exclusively on one dietary source: host tissue. However, the small numbers of studies previously carried out on isotopic discrimination in parasite–host (ΔXP-HT) systems have yielded controversial results, showing some parasites to be isotopically depleted relative to their food source, while others are enriched or in equilibrium with their hosts. Although the mechanism for these deviations from expectations remains to be understood, possible influences of specific feeding niche or selection for only a few nutritional components by the parasite are discussed. ΔXP-HT for multiple isotopes (δ13C, δ15N, δ34S) were measured in the pike tapeworm Triaenophorus nodulosus and two of its life-cycle fish hosts, perch Perca fluviatilis and pike Esox lucius, within which T. nodulosus occupies different feeding locations. Variability in the value of ΔXP-HT calculated for the parasite and its different hosts indicates an influence of feeding location on isotopic discrimination. In perch liver ΔXP-HT was relatively more negative for all three stable isotopes. In pike gut ΔXP-HT was more positive for δ13C, as expected in conventional consumer–diet systems. For parasites feeding on pike gut, however, the δ15N and δ34S isotope values were comparable with those of the host. We discuss potential causes of these deviations from expectations, including the effect of specific parasite feeding niches, and conclude that ΔXP-HT should be critically evaluated for trophic interactions between parasite and host before general patterns are assumed.


2020 ◽  
Vol 94 ◽  
Author(s):  
J.N. Caira ◽  
K. Jensen ◽  
C. Hayes ◽  
T.R. Ruhnke

Abstract Three new cestode species are described from the crocodile shark (Pseudocarcharias kamoharai) in Ecuador. All three were examined with light and scanning electron microscopy. The unique combination of morphological features in one of the new species prompted formal investigation of the non-monophyly of Paraorygmatobothrium relative to the morphologically similar genera Doliobothrium, Guidus, Marsupiobothrium, Nandocestus, Orectolobicestus, Ruhnkecestus and Scyphophyllidium. Sequence data generated for part of the 28S rDNA gene were subjected to maximum likelihood (ML) analysis. The resulting tree led to the synonymization of six of these seven genera with Scyphophyllidium, and transfer of their species to the latter genus. With the new species, the number of described members of Scyphophyllidium is now 45. The diagnosis of Scyphophyllidium is revised to accommodate these species. In addition, to expedite future descriptions, eight categories of Scyphophyllidium species are circumscribed, based largely on bothridial features. Scyphophyllidium timvickiorum n. sp. is a category 1 species. Beyond being the smallest category 1 species, it bears, rather than lacks, apical suckers and lacks, rather than bears, strobilar scutes. The two other new species are members of Clistobothrium. Clistobothrium amyae n. sp. differs from its congeners in bothridial shape, elongate cephalic peduncle and tiny size. Clistobothrium gabywalterorum n. sp. differs from the two of its congeners that also possess foliose bothridia in overall size and testis number. Despite their substantial morphological differences, the ML tree indicates they are sister taxa. Both are unique among their congeners in possessing cephalic peduncle spinitriches. The diagnosis of Clistobothrium is revised accordingly.


Author(s):  
P.S. Porter ◽  
T. Aoyagi ◽  
R. Matta

Using standard techniques of scanning electron microscopy (SEM), over 1000 human hair defects have been studied. In several of the defects, the pathogenesis of the abnormality has been clarified using these techniques. It is the purpose of this paper to present several distinct morphologic abnormalities of hair and to discuss their pathogenesis as elucidated through techniques of scanning electron microscopy.


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Ann Chidester Van Orden ◽  
John L. Chidester ◽  
Anna C. Fraker ◽  
Pei Sung

The influence of small variations in the composition on the corrosion behavior of Co-Cr-Mo alloys has been studied using scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), and electrochemical measurements. SEM and EDX data were correlated with data from in vitro corrosion measurements involving repassivation and also potentiostatic anodic polarization measurements. Specimens studied included the four alloys shown in Table 1. Corrosion tests were conducted in Hanks' physiological saline solution which has a pH of 7.4 and was held at a temperature of 37°C. Specimens were mechanically polished to a surface finish with 0.05 µm A1203, then exposed to the solution and anodically polarized at a rate of 0.006 v/min. All voltages were measured vs. the saturated calomel electrode (s.c.e.).. Specimens had breakdown potentials near 0.47V vs. s.c.e.


Author(s):  
Ronald H. Bradley ◽  
R. S. Berk ◽  
L. D. Hazlett

The nude mouse is a hairless mutant (homozygous for the mutation nude, nu/nu), which is born lacking a thymus and possesses a severe defect in cellular immunity. Spontaneous unilateral cataractous lesions were noted (during ocular examination using a stereomicroscope at 40X) in 14 of a series of 60 animals (20%). This transmission and scanning microscopic study characterizes the morphology of this cataract and contrasts these data with normal nude mouse lens.All animals were sacrificed by an ether overdose. Eyes were enucleated and immersed in a mixed fixative (1% osmium tetroxide and 6% glutaraldehyde in Sorenson's phosphate buffer pH 7.4 at 0-4°C) for 3 hours, dehydrated in graded ethanols and embedded in Epon-Araldite for transmission microscopy. Specimens for scanning electron microscopy were fixed similarly, dehydrated in graded ethanols, then to graded changes of Freon 113 and ethanol to 100% Freon 113 and critically point dried in a Bomar critical point dryer using Freon 13 as the transition fluid.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Sign in / Sign up

Export Citation Format

Share Document