Detection of the antimicrobial peptide gene in different Amaranthus species

Biologia ◽  
2008 ◽  
Vol 63 (2) ◽  
Author(s):  
Radka Pribylova ◽  
Petr Kralik ◽  
Bohumila Pisarikova ◽  
Ivo Pavlik

AbstractUsing primers to amplify the gene AMP2 in Amaranthus caudatus, we found the gene to be present in seven other species of the Amaranthus genus (A. albus, A. cruentus, A. blitum, A. hybridus, A. hypochondriacus, A. retroflexus and A. tricolor), in which it had not been described previously. The PCR products were sequenced and it was established that all the sequences were identical, except for two polymorphisms. These single nucleotide polymorphisms occurred at nucleotide positions 45 and 246. This exchange of one nucleotide for another was manifested in an amino acid change in both cases. Due to the fact that both polymorphisms lay outside the region encoding the chitin-binding peptide domain, which is crucial for antimicrobial peptide function, they will not likely affect the proper functioning of the peptide. With the exception of the above-mentioned polymorphisms, all sequences were identical to the sequence of the AMP2 gene that codes for the A. caudatus Ac-AMP2 (antimicrobial peptide isolated from Amaranthus caudatus seeds). The detection of sequences with high degree of sequence similarity to A. caudatus AMP2 gene leads us to the assumption that an antimicrobial peptide could also be produced by other amaranth species.

2020 ◽  
Author(s):  
Evert den Drijver ◽  
Joep J.J.M. Stohr ◽  
Jaco J. Verweij ◽  
Carlo Verhulst ◽  
Francisca C. Velkers ◽  
...  

AbstractDistinguishing epidemiologically related and unrelated plasmids is essential to confirm plasmid transmission. We compared IncI1-pST12 plasmids from both human and livestock origin and explored the degree of sequence similarity between plasmids from Enterobacteriaceae with different epidemiological links. Short-read sequence data of Enterobacteriaceae cultured from humans and broilers were screened for the presence of both a blaCMY-2 gene and an IncI1-pST12 replicon. Isolates were long-read sequenced on a MinION sequencer (OxfordNanopore Technologies). After plasmid reconstruction using hybrid assembly, pairwise single nucleotide polymorphisms (SNP) were determined. The plasmids were annotated, and a pan-genome was constructed to compare genes variably present between the different plasmids. Nine Escherichia coli sequences of broiler origin, four Escherichia coli sequences and one Salmonella enterica sequence of human origin were selected for the current analysis. A circular contig with the IncI1-pST12 replicon and blaCMY-2 gene was extracted from the assembly graph of all fourteen isolates. Analysis of the IncI1-pST12 plasmids revealed a low number of SNP differences (range of 0-9 SNPs). The range of SNP differences overlapped in isolates with different epidemiological links. One-hundred and twelve from a total of 113 genes of the pan-genome were present in all plasmid constructs. NGS-analysis of blaCMY--2-containing IncI1-pST12 plasmids isolated from Enterobacteriaceae with different epidemiological links show a high degree of sequence similarity in terms of SNP differences and the number of shared genes. Therefore, statements on the horizontal transfer of these plasmids based on genetic identity should be made with caution.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 37-37
Author(s):  
Andrea N DeCarlo ◽  
Keelee J McCarty ◽  
Sarah K Richey ◽  
Nathan Long ◽  
Scott Pratt

Abstract Detrimental effects to male reproductive physiology have been observed due to changes in prolactin (PRL) serum concentration. Regulation of PRL by dopamine binding to the dopamine type-2 receptor (DRD2) is well defined and associations between male physiology and single nucleotide polymorphisms (SNPs) within the DRD2 gene have been observed. The objective of the study was to evaluate association of a DRD2 SNP to PRL protein expression in bulls. Testis and epididymis were collected from bulls grazing a forage containing or lacking a dopamine agonist at the end of a 126 d study (n = 14). Bovine pituitaries (n = 587) were collected randomly over 3 mo from a local abattoir which processes cull cows and bulls. Sex of pituitaries was verified (n = 259 males) by duplex PCR for amplification of SRY and b-actin followed by Southern blotting of PCR products for selection of male. Prolactin protein expression was assessed in testis, epididymis, and pituitary by western blotting. Expression of PRL protein was below detection range in reproductive tissues but was present in pituitary, therefore experiments continued in pituitary. Restriction fragment length polymorphism genotyping was performed on pituitaries by amplification of the DRD2 SNP region followed by digestion with a Tfil enzyme. Digested of products produced 3,2, or 1 band (AG, AA, GG, respectively). A subset of male pituitaries was blotted by slot blot manifold and PRL protein expression assessed by immunodetection and densitometry analysis normalized to GAPDH expression. Pituitary genotype distribution was 17.4% AA (n = 16), 63% AG (n = 58), and 19.6% GG (n = 18). Prolactin protein expression in the pituitary was similar across genotype (P = 0.23). These findings indicate that the DRD2 SNP has no genotypic effect on PRL protein expression in bovine pituitary.


2018 ◽  
Vol 5 (1) ◽  
pp. 37-40
Author(s):  
Seri Mirianti Ishar ◽  
Jeyaganesan Pillay a/l Balaraman ◽  
Muhammad Jefri Mohd Yusof ◽  
Khairul Osman ◽  
Lee Loong Chuen

Human DNA consists of nucleus DNA (nDNA) and mitochondrial DNA (mtDNA). Both are valuable in medicine and forensic genetics but in this project, single nucleotide polymorphisms (SNPs) in mtDNA are used to trace the mutation occurred. Mutations in the sequence of alleles can lead to haplogroup variation and also certain diseases. The purpose of this study is to screen of mutations on alleles G709A, G3496T, and A3537G in Malay population of The National University of Malaysia (UKM) students. These SNPs lie in the ND1 (nitrogen dehydrogenase subunit 1) coding region, and the reports state that these three alleles are prone to mutate. From MitoMap Web site, the mutations of these alleles are reported to have potential in causing several diseases with the collaboration of other SNPs mutation. Allele G709A is reported to have an association with hearing loss and Leber Hereditary Optic Neuropathy (LHON) while allele G3496T is associated to LHON only. Allele A3537G is related to diabetes. A total of 100 DNA samples were collected from Malay students of UKM and preserved on FTA card to be purified later. The concentration of the DNA on the purified FTA card was between 10μM to 20μM. An attempt was made by amplifying those three loci from the genomic DNA. The amplified product was detected and separated using 1% gel electrophoresis. Before sequencing, the PCR products were visualized under UV light using gel documentation system. All PCR products were sequenced to detect the mutation on every single position chosen. From the alignment of sequencing results, allele G709A and allele G3496T showed no mutation. Meanwhile four samples from alleles A3537G has the mutation. From the results obtained, it seems that mutations are rare in all selected alleles. It is recommended to increase the sample size and alleles selected in the future to increase the strength of the study. This study also should be applied to other populations in Malaysia such as Chinese and Indian.  


2016 ◽  
Vol 10 (1) ◽  
pp. 37-41
Author(s):  
Fatima Abood Chaloob

Infection with hepatitis C virus (HCV) imposes a global challenge with over 180 million cases worldwide. Only few patients spontaneously had their virus neutralized, while most patients develop chronic HCV infection. This implies a key role of genetic factors in viral clearance or persistence. The current study aimed at clarifying the effect of certain single nucleotide polymorphisms (SNPs) on individual's susceptibility to HCV infection.  A total of 60 patients with confirmed HCV infection and 35 apparently healthy individuals were enrolled in this study. Blood sample was obtained from each participant, from which DNA was extracted. The JAK1gene was amplified with conventional PCR technique using three sets of primers targeting three SNPs in this gene: rs2780895, rs4244165 and rs17127024. Restriction fragment length polymorphism (RFLP) was used for genotyping of PCR products. Each of rs2780895 and rs17127024 had two genotypes in both patients and controls, however, only the heterozygous genotype of the SNP rs2780895 (CT) significantly associated with the susceptibility to HCV. The SNP rs4244165 appeared in only with homozygous wild genotype (GG) in both patients and controls. It can be concluded that allele T of the SNP rs2780895 could be considered as a risk factor for infection with HCV


2009 ◽  
Vol 75 (23) ◽  
pp. 7501-7508 ◽  
Author(s):  
Elizabeth P. Briczinski ◽  
Joseph R. Loquasto ◽  
Rodolphe Barrangou ◽  
Edward G. Dudley ◽  
Anastasia M. Roberts ◽  
...  

ABSTRACT Several probiotic strains of Bifidobacterium animalis subsp. lactis are widely supplemented into food products and dietary supplements due to their documented health benefits and ability to survive within the mammalian gastrointestinal tract and acidified dairy products. The strain specificity of these characteristics demands techniques with high discriminatory power to differentiate among strains. However, to date, molecular approaches, such as pulsed-field gel electrophoresis and randomly amplified polymorphic DNA-PCR, have been ineffective at achieving strain separation due to the monomorphic nature of this subspecies. Previously, sequencing and comparison of two B. animalis subsp. lactis genomes (DSMZ 10140 and Bl-04) confirmed this high level of sequence similarity, identifying only 47 single-nucleotide polymorphisms (SNPs) and four insertions and/or deletions (INDELs) between them. In this study, we hypothesized that a sequence-based typing method targeting these loci would permit greater discrimination between strains than previously attempted methods. Sequencing 50 of these loci in 24 strains of B. animalis subsp. lactis revealed that a combination of nine SNPs/INDELs could be used to differentiate strains into 14 distinct genotypic groups. In addition, the presence of a nonsynonymous SNP within the gene encoding a putative glucose uptake protein was found to correlate with the ability of certain strains to transport glucose and to grow rapidly in a medium containing glucose as the sole carbon source. The method reported here can be used in clinical, regulatory, and commercial applications requiring identification of B. animalis subsp. lactis at the strain level.


2009 ◽  
Vol 49 (8) ◽  
pp. 675 ◽  
Author(s):  
N. L. Feeley ◽  
K. A. Munyard

The aim of this study was to determine if any correlation exists between melanocortin-1 receptor (MC1R) polymorphisms and skin and fibre colour in alpacas. Primers capable of amplifying the entire alpaca MC1R gene were designed from a comparative alignment of Bos taurus and Mus musculus MC1R gene sequences. The complete MC1R gene of 41 alpacas exhibiting a range of fibre colours, and which were sourced from farms across Australia, was sequenced from PCR products. Twenty-one single nucleotide polymorphisms were identified within MC1R. Two of these polymorphisms (A82G and C901T) have the potential to reduce eumelanin production by disrupting the activity of MC1R. No agreement was observed between fibre colour alone and MC1R genotype in the 41 animals in this study. However, when the animals were assigned to groups based on the presence or absence of eumelanin in their fibre and skin, only animals that had at least one allele with the A82/C901 combination expressed eumelanin. We propose that A82/C901 is the wild-type dominant ‘E’ MC1R allele, while alpacas with either G82/T901 or G82/Y901 are homozygous for the recessive ‘e’ MC1R allele and are therefore unable to produce eumelanin.


2001 ◽  
Vol 47 (8) ◽  
pp. 1373-1377 ◽  
Author(s):  
Tony M Hsu ◽  
Scott M Law ◽  
Shenghui Duan ◽  
Bruce P Neri ◽  
Pui-Yan Kwok

Abstract Background: The PCR-Invader® assay is a robust, homogeneous assay that has been shown to be highly sensitive and specific in genotyping single-nucleotide polymorphism (SNP) markers. In this study, we introduce two changes to improve the assay: (a) we streamline the PCR-Invader method by assaying both alleles for each SNP in one reaction; and (b) we reduce the cost of the method by adopting fluorescence polarization (FP) as the detection method. Methods: PCR product was incubated with Invader oligonucleotide and two primary probes at 93 °C for 5 min. Signal probes corresponding to the cleaved flaps of the primary probes [labeled with fluorescein and 6-carboxytetramethylrhodamine (TAMRA) dye] and Cleavase® VIII enzyme (a flap endonuclease) were then added to the mixture. This reaction mixture was incubated at 63 °C for 5 min. FP measurements were made with a fluorescence plate reader. Results: Eighty-eight individuals were genotyped across a panel of 10 SNPs, using PCR product as template, for a total of 880 genotypes. An average “no call” rate of 3.2% was observed after first round of experiments. PCR products were remade in those samples that failed to produce any genotype in the first round, and all gave clear-cut genotypes. When the genotypes determined by the PCR-Invader assay and template-directed dye-terminator incorporation assay with FP were compared, they were in 100% concordance for all SNP markers and experiments. Conclusions: The improvements introduced in this study make PCR-Invader assay simpler and more cost-effective, and therefore more suitable for high-throughput genotyping.


2012 ◽  
Vol 49 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Yoosook Lee ◽  
Stephanie N. Seifert ◽  
Catelyn C. Nieman ◽  
Rory D. McAbee ◽  
Parker Goodell ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Tapan Kumar ◽  
Neha Tiwari ◽  
Chellapilla Bharadwaj ◽  
Ashutosh Sarker ◽  
Sneha Priya Reddy Pappula ◽  
...  

Chickpea (Cicer arietinum L.) is an economically important food legume grown in arid and semi-arid regions of the world. Chickpea is cultivated mainly in the rainfed, residual moisture, and restricted irrigation condition. The crop is always prone to drought stress which is resulting in flower drop, unfilled pods, and is a major yield reducer in many parts of the world. The present study elucidates the association between candidate gene and morpho-physiological traits for the screening of drought tolerance in chickpea. Abiotic stress-responsive gene Dehydrin (DHN) was identified in some of the chickpea genotypes based on the sequence similarity approach to play a major role in drought tolerance. Analysis of variance revealed a significant effect of drought on relative water content, membrane stability index, plant height, and yield traits. The genotypes Pusa1103, Pusa362, and ICC4958 were found most promising genotypes for drought tolerance as they maintained the higher value of osmotic regulations and yield characters. The results were further supported by a sequence similarity approach for the dehydrin gene when analyzed for the presence of single nucleotide polymorphisms (SNPs) and indels. Homozygous indels and single nucleotide polymorphisms were found after the sequencing in some of the selected genotypes.


2020 ◽  
Vol 8 (11) ◽  
pp. 1755
Author(s):  
Evert Drijver ◽  
Joep Stohr ◽  
Jaco Verweij ◽  
Carlo Verhulst ◽  
Francisca Velkers ◽  
...  

Distinguishing epidemiologically related and unrelated plasmids is essential to confirm plasmid transmission. We compared IncI1–pST12 plasmids from both human and livestock origin and explored the degree of sequence similarity between plasmids from Enterobacteriaceae with different epidemiological links. Short-read sequence data of Enterobacteriaceae cultured from humans and broilers were screened for the presence of both a blaCMY-2 gene and an IncI1–pST12 replicon. Isolates were long-read sequenced on a MinION sequencer (OxfordNanopore Technologies). After plasmid reconstruction using hybrid assembly, pairwise single nucleotide polymorphisms (SNPs) were determined. The plasmids were annotated, and a pan-genome was constructed to compare genes variably present between the different plasmids. Nine Escherichia coli sequences of broiler origin, four Escherichia coli sequences, and one Salmonella enterica sequence of human origin were selected for the current analysis. A circular contig with the IncI1–pST12 replicon and blaCMY-2 gene was extracted from the assembly graph of all fourteen isolates. Analysis of the IncI1–pST12 plasmids revealed a low number of SNP differences (range of 0–9 SNPs). The range of SNP differences overlapped in isolates with different epidemiological links. One-hundred and twelve from a total of 113 genes of the pan-genome were present in all plasmid constructs. Next generation sequencing analysis of blaCMY-2-containing IncI1–pST12 plasmids isolated from Enterobacteriaceae with different epidemiological links show a high degree of sequence similarity in terms of SNP differences and the number of shared genes. Therefore, statements on the horizontal transfer of these plasmids based on genetic identity should be made with caution.


Sign in / Sign up

Export Citation Format

Share Document