REE in fluid inclusions of quartz from gold deposits of north-eastern Russia

2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Olga Vikent’eva ◽  
Gennady Gamyanin ◽  
Nikolay Bortnikov

AbstractInductively coupled plasma-mass spectrometry (ICP-MS) has been used to determine rare earth element concentrations in aqueous solutions extracted from fluid inclusions. Quartz has been sampled from ores of three major types of polygenic gold hydrothermal systems of North-Eastern Russia: (1) gold-quartz-sulphide (Au-Q, Nezhdaninsk); (2) gold-antimony (Au-Sb, Sarylakh) and (3) intrusion-related gold-bismuth-siderite-polysulphide (Au-Bi-Sid, Arkachan) large deposits located in terrigenous rocks of the Verkhoyansk fold belt. The total concentration of REE in the fluid inclusions is not high (up to 52 ppm). The contribution of LREE dominates in REE balance (ΣLREE/ΣHREE=7.4–112.1). The chondrite-normalized REE patterns of inclusion fluids for the Au-Q and Au-Bi-Sid deposits are characterized by LREE enrichment with a positive or negative Eu anomaly. REE patterns for the regenerated quartz from Au-Sb deposits are characterized by pronounced differentiation between light and heavy lanthanides in fluid inclusions. Significant total REE concentration decreasing (on 1–2 order) from early to late stages of Nezhdaninsk and Arkachan deposits is revealed. The positive correlations of total REE concentrations with Rb, Cs, Li and B contents in fluid inclusions are shown. The REE distribution in fluid inclusions can be used as indicators of the contribution of magmatic fluid in the hydrothermal system.

1982 ◽  
Vol 46 (339) ◽  
pp. 179-186 ◽  
Author(s):  
A. H. Rankin ◽  
D. H. M. Alderton ◽  
M. Thompson ◽  
J. E. Goulter

AbstractUranium has been detected in fluid inclusion decrepitates from quartz of several granites of the British Isles and from vein quartz associated with the Hcrcynian granites of SW England using ICP. Material, ejected from the inclusions during decrepitation on heating the sample, is transferred into the plasma for qualitative analysis via a stream of argon. Several other elements have been detected in the decrepitate, of which carbon is of particular interest. It shows a strong positive correlation with U and indicates the importance of C (presumably as carbonate complexes) in the transport of U in hydrothermal systems. Approximate order of magnitude estimates of the average U contents of fluid inclusions from the SW England samples, based on the assumption that U in the decrepitates is principally derived from the fluid inclusions, range from less than one to over a thousand ppm. Fluid inclusions may therefore be important in contributing to the levels of U reported in quartz (0.1 to 10 ppm).


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2651
Author(s):  
Magdalena Jabłońska-Czapla ◽  
Katarzyna Grygoyć

The optimization and validation of a methodology for determining and extracting inorganic ionic Te(VI) and Te(IV) forms in easily-leached fractions of soil by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry (IC-ICP-MS) were studied. In this paper, the total concentration of Te, pH, and red-ox potential were determined. Ions were successfully separated in 4 min on a Hamilton PRPX100 column with 0.002 mg/kg and 0.004 mg/kg limits of detection for Te(VI) and Te(IV), respectively. Soil samples were collected from areas subjected to the influence of an electrowaste processing and sorting plant. Sequential chemical extraction of soils showed that tellurium was bound mainly with sulphides, organic matter, and silicates. Optimization of soil extraction allowed 20% average extraction efficiency to be obtained, using 100 mM citric acid as the extractant. In the tested soil samples, both tellurium species were present. In most cases, the soils contained a reduced Te form, or the concentrations of both species were similar.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 966
Author(s):  
Baptiste Madon ◽  
Lucie Mathieu ◽  
Jeffrey H. Marsh

Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. These magmatic-hydrothermal systems share common features with orogenic gold deposits, such as spatial and temporal association with syntectonic magmatism. Genetic association with magmatism, however, remains controversial for many greenstone belt hosted Au deposits. To precisely identify the link between syntectonic magmas and gold mineralization in the Abitibi Subprovince, major and trace-element compositions of whole rock, zircon, apatite, and amphibole grains were measured for five intrusions in the Chibougamau area; the Anville, Saussure, Chevrillon, Opémisca, and Lac Line Plutons. The selected intrusions are representative of the chemical diversity of synvolcanic (TTG suite) and syntectonic (e.g., sanukitoid, alkaline intrusion) magmatism. Chemical data enable calculation of oxygen fugacity and volatile content, and these parameters were interpreted using data collected by electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The zircon and apatite data and associated oxygen fugacity values in magma indicate that the youngest magmas are the most oxidized. Moreover, similar oxygen fugacity and high volatile content for both the Saussure Pluton and the mineralized Lac Line intrusion may indicate a possible prospective mineralized system associated with the syntectonic Saussure intrusion.


Author(s):  
Sarah C. Swan ◽  
John D.M. Gordon ◽  
Beatriz Morales-Nin ◽  
Tracy Shimmield ◽  
Terrie Sawyer ◽  
...  

Otoliths were obtained from Nezumia aequalis, a small macrourid that is widely distributed throughout the Atlantic and Mediterranean—two very different physical environments. Microchemical analysis of the otoliths was carried out using solution-based inductively coupled plasma mass spectrometry of whole otoliths. Significant differences between fish populations were found for concentrations of the elements Li and Sr. Only 54% of the samples were correctly classified by area using discriminant analysis. Otolith samples from the Reykjanes Ridge were most easily distinguished. The results are discussed in relation to trace element concentrations in the waters of the north-eastern Atlantic Ocean and the Mediterranean Sea.


2017 ◽  
Vol 32 (5) ◽  
pp. 1052-1063 ◽  
Author(s):  
Katerina Schlöglova ◽  
Markus Wälle ◽  
Christoph A. Heinrich

This paper presents a practical guide to an optimized analytical procedure for the reliable quantification of trace element concentrations in fluid inclusions hosted by natural minerals, using laser ablation inductively coupled plasma mass spectrometry (ICP-MS).


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 535
Author(s):  
Franca Piera Caucia ◽  
Luigi Marinoni ◽  
Maurizio Scacchetti ◽  
Maria Pia Riccardi ◽  
Omar Bartoli

In Val d’Ala (Western Alps in Piedmont, Italy), the most interesting rocks for mineralogical research are represented by rodingite (rich in mineralized veins and fractures) associated with serpentinite in the eclogitized oceanic crust of Piedmont Zone, south of Gran Paradiso Massif. Among the vein-filling minerals, vesuvianite is well appreciated for its potential as gem-quality materials, even though it has never been characterized in detail. This study provides a gemological characterization of eleven vesuvianite crystals from different localities of the Val d’Ala. The refractive index (1.717–1.708) and density (1.705–1.709) values of our vesuvianite are in the range of those in the literature. Scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) established that the samples are pretty compositionally homogeneous in terms of major elements, while trace and rare earth elements (REE) contents are more variable. All REE patterns are characterized by pronounced positive Eu anomalies. The variations in color (from olive green to dark green with chocolate (reddish-brown color shades and polychrome bands) are due to the relevant presence of Fe and, to a lesser extent, Ti and Cr. The X-ray powder diffraction (XRPD) analyses and SEM/EDS quantitative study indicate that the other phases associated with vesuvianite are represented by diopside, garnet, clinochlore.


2020 ◽  
Vol 115 (2) ◽  
pp. 241-277 ◽  
Author(s):  
Evan C.G. Hastie ◽  
Daniel J. Kontak ◽  
Bruno Lafrance

Abstract Recognizing if and how Au is remobilized, in solid, melt, or fluid state, is critical for understanding the origin of high-grade ore zones in Au deposits. When evidence for Au remobilization can be demonstrated, then primary versus secondary processes can be distinguished, resulting in a more complete understanding of Au deposit formation. To address this, samples from two Au deposits, Jerome and Kenty, in the Archean Swayze greenstone belt of northern Ontario, Canada, together with archived samples from 39 high-grade Au deposits from the Abitibi greenstone belt across Ontario and Quebec, were geochemically characterized using integrated scanning electron microscopy-energy dispersive spectroscopy and electron microprobe imaging and analyses in addition to laser ablation-inductively coupled plasma-mass spectrometry elemental mapping. These data provided the basis to develop a model for Au remobilization and upgrading of Au that is widely applicable to orogenic gold settings. Data for the Jerome deposit indicate that Au uptake into early pyrite was not due to pulsing of different fluids, but instead was predominantly controlled by S availability, whereby the oscillatory/sector zoning in pyrite resulted from the substitution of As into S sites during rapid growth due to local chemical disequilibrium. In addition, Au-bearing pyrite from both the Jerome and Kenty deposits records textures, such as porosity development coincident with the presence of native gold and accessory sulfide phases, that are strongly suggestive of coupled dissolution-reprecipitation (CDR) reactions that liberated Au and associated elements from earlier auriferous (100–5,000 ppm Au) pyrite. During the remobilization process, Au and Ag were decoupled, which resulted in (1) a change in Au/Ag ratios of 0.5 to 5 in early pyrite to ≈9 in the new native gold (900 Au fineness) and (2) incorporation of Ag into cogenetic secondary mineral phases (e.g., chalcopyrite, tetrahedrite, and galena). Evidence for an association of low-melting point chalcophile elements (LMCE; Hg, Te, Sb, and Bi) with Au at the Jerome, Kenty, and many (>50%) of the 39 historic deposits sampled, along with native gold filling structurally favorable sites in vein quartz in all samples, indicates a fluid might not have been the only factor contributing to remobilization. This systematic Au-LMCE association strongly supports a model whereby Au is released by CDR reactions and is then remobilized by fluid-mediated, LMCE-rich melts that began to form at 335°C and/or by local, nanoparticle (nanomelt?) transport during deformation and metamorphism. Conclusions drawn from this study have implications for Au deposits globally and can account for the common presence of coarse-grained, commonly crystalline, native gold filling fractures in quartz and the paragenetically late-stage origin of gold in veins. They can also better explain the inability of Au in solution remobilization models to account for locally high gold grades, given the relatively low solubility of Au in hydrothermal fluids.


2021 ◽  
Author(s):  
Michaela Jungová ◽  
Michael O. Asare ◽  
Vladimíra Jurasová ◽  
Michal Hejcman

Abstract Background and aimsRumex alpinus is a native plant in the mountains of Europe, whose distribution is affected by its utilization as a vegetable and medicinal herb. The distribution of micro and risk elements in its organs and the possibility for phytoremediation are not well-known. We aimed to examine the safety of consuming R. alpinus from the Krkonoše Mountains, Czech Republic, and Alps (Austria and Italy).MethodsWe determined the total and plant-available concentration of Fe, Zn, Cu, Mn, Al, As, Cr, Ni, Pb, and Cd in the soil and total concentration in the organs of R. alpinus using inductively coupled plasma-optical emission spectrometry.ResultsThe uptake and distribution of elements by plants were characterized by bioaccumulation and translocation (TF) factors. The intensity of elements accumulation by R. alpinus is considerably different, depending on locality. R. alpinus has considerable tolerance to Zn, Cu, As, Cr, Ni, with easy accumulation strategy. High Al and Cd concentration in belowground biomass (rhizome) indicates a defensive mechanism for them. Although the aboveground biomass (emerging, senescent, mature leaves, petiole) has some degree of accumulation of risk elements, R. alpinus is potentially suitable for phytoremediation of moderately contaminated soils. The results revealed that R. alpinus excludes Al, with high TF for Mn, Zn, Cu, As, Ni, and Pb. Given the accumulation of As and Cr, we recommend caution in its usage.ConclusionDetailed elemental analysis of R. alpinus organs is recommended before its application as medicinal herb or food, especially in contaminated soils.


2017 ◽  
Vol 34 (3) ◽  
pp. 199 ◽  
Author(s):  
Teresa Pi ◽  
Jesús Solé ◽  
Ofelia Morton-Bermea ◽  
Yuri Taran ◽  
Elizabeth Hernández-Álvarez

We present and evaluate lanthanide contents measured by inductively coupled plasma mass spectrometry (ICP-MS) in fluorite samples from the fluorite deposits in Zacualpan and Taxco mining districts in the south of Mexico. The information is used to distinguish different generations of fluorite, to establish a correlation between mineralization episodes and the wall rock nature, and to identify postdepositional processes.The total lanthanide content of the fluorites are variable, and early- stage fluorite samples are usually enriched in LREE. The concentration of REE in fluorite is low in comparison with the volcanic and metamorphic rocks (∑REE > 100 ppm) and is generally high respect the carbonates (∑REE < 30 ppm). There is host rock influence. The higher REE concentra- tions are in fluorites hosted by volcanic rocks. The fluorite that replaced carbonate is characterized by low REE to very low concentrations. Fluorite samples associated with sulfurs are typically enriched in HREE. Nearly all fluorites show a negative Eu anomaly similar to the REE anomaly observed in the volcanic rock. Only some early stage dark, uranium rich fluorites, from la Azul deposit, have a strong positive Eu anomaly. Direct correlation between color and REE patterns is observed in some samples.In the Zacualpan mining district, only an episode of mineralization has been discriminated, where fluorite presents flat to HREE- enriched chondrite-normalized REE patterns.In the Taxco mining district and particularly in the “Mina la Azul”, multiple hydrothermal events of mineralization have been determined. The first generation of fluorite is formed by replacement of carbonates and is characterized by very low contents of lanthanides, chondrite- normalized REE patterns similar to the limestone, high strontium content and primary textures (e.g. massive fluorite and rhythmites). The second generation of fluorite is related to the entry of new fluid to the system and has higher REE concentrations, chondrite-normalized REE patterns similar to volcanic rocks, low strontium content and secondary textures (i.e. breccias, nodules). Most of the samples show a genetic relationship between fluorite and fluids of magmatic origin.


Sign in / Sign up

Export Citation Format

Share Document