scholarly journals Bolted Joint Preload Distribution from Torque Tightening

2021 ◽  
Vol 71 (2) ◽  
pp. 329-342
Author(s):  
Welch Michael

Abstract The purpose of this paper is to develop an understanding of how bolt preloads are distributed within a joint as each bolt is tightened in turn by the use of a calibrated torque wrench. It discusses how the order that the joints nuts/bolts are tightened can affect the final bolt preload. It also investigates the effect on incrementally increasing the bolt preload through a series of applications of the controlled torque tightening sequence. Classical analysis methods are used to develop a method of analysis that can be applied to most preloaded bolted joints. It is assumed that the static friction coefficient is approximately 15% less than the dynamic friction. It is found that the bolt preload distribution across the joint can range from slightly above the target preload to significantly less than the target preload. The bolts with a preload greater than the target preload are found to be those tightened towards the end of the tightening sequence, usually located close to the outer edges of the joint’s bolt array. The bolts with a preload less than the target preload are those tightened early in the tightening sequence, located centrally within the joints bolt array. The methods presented can be used to optimise bolted joint design and assembly procedures. Optimising the design of preloaded bolted joints leads to more efficient use of the joints.

Author(s):  
Xiangzhen Xue ◽  
Jipeng Jia ◽  
Qixin Huo ◽  
Junhong Jia

To investigate the fretting wear of involute spline couplings in aerospace, rack-plane spline couplings rather than the conventional involute spline couplings in aerospace were used to conduct tribological experiments, and it was assumed that the rack-plane spline couplings exhibit consistent contact stress with the real involute spline couplings in aerospace. The relationships among the static friction coefficient, dynamic friction coefficient, and fretting friction coefficient were established via tribological experiments, as well as the fretting-wear mechanism of the rack-plane spline couplings was examined. A fretting-wear estimation model based on the fretting-wear mechanism was developed. By applying the modified Archard equation and Arbitrary Lagrangian–Eulerian adaptive, mesh smoothing algorithm of Abacus was used. According to our experimental results, the fretting wear of the rack-plane spline couplings consisted primarily of abrasive wear, oxidative wear, and adhesive wear. For both, lubrication and non-lubrication settings, the fretting friction coefficient of 18CrNi4A steel (0.27) fluctuated between 0.12 (dynamic friction coefficient) and 0.35 (static friction coefficient). The fretting-wear results estimated via numerical prediction were consistent with the experimental results. When sm (vibration amplitude) was 20, 35, and 50 µm, the most difference in the fretting wear between the experimental results and numerical estimation was 0.001, 0.0007, and 0.001 mm, respectively. Therefore, the proposed model provides a method for accurate estimation of the fretting-wear. Additionally, the model contributes to the precise design of involute spline couplings in aerospace.


2013 ◽  
Vol 401-403 ◽  
pp. 320-325
Author(s):  
Ming Ming Qiu ◽  
Han Zhao ◽  
Fa Ming Sha

Introduce the dynamic friction coefficient of clutch friction plate. Establish Mathematical model of starting process, carried out vibration analysis for frictional sliding process systematically, validated the analysis using Matlab/simulink software. Meanwhile, compared with the starting process by static friction coefficient. The results show that using dynamic friction coefficient to analyse starting process conforms to the actual working condition.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 102
Author(s):  
Jian Wu ◽  
Hang Luo ◽  
Haohao Li ◽  
Benlong Su ◽  
Youshan Wang ◽  
...  

Cylinder has become an indispensable and important pneumatic actuator in the development of green production technology. The sealing performance of the cylinder directly affects its safety and reliability. Under the service environment of the cylinder, hydrothermal aging of the rubber sealing ring directly affects the dynamic friction performance of the cylinder. So, the dynamic friction model of the cylinder has been developed based on the LuGre friction model, which considers the influence of hydrothermal aging. Here, the influences of the static friction coefficient and Coulomb friction coefficient on the friction model are analyzed. Then, the aging characteristic equation of rubber is embedded in the model for revealing the influence of aging on the friction coefficient of the model. Results show that the aging temperature, aging time, and compressive stress affects the friction coefficient; the variation of the static friction coefficient is larger than that of the Coulomb friction coefficient. The improved cylinder friction model can describe the influence of the aging process on the cylinder friction characteristics, which is of great significance in the design of the cylinder’s dynamic performance.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Rebecca D. Ibrahim Dickey ◽  
Robert L. Jackson ◽  
George T. Flowers

A new experimental apparatus is used to measure the static friction between tin surfaces under various loads. After the data is collected it is then compared to an existing theoretical model. The experiment uses the classical physics technique of increasing the incline of a plane and block until the block slides. The angle at the initiation of sliding is used to find the static friction coefficient. The experiment utilizes an automated apparatus to minimize human error. The finite element based statistical rough surface contact model for static friction under full stick by Li, Etsion, and Talke (2010, “Contact Area and Static Friction of Rough Surfaces with High Plasticity Index,” ASME Journal of Tribology, 132(3), p. 031401) is used to make predictions of the friction coefficient using surface profile data from the experiment. Comparison of the computational and experimental methods shows similar qualitative trends, and even some quantitative agreement. After adjusting the results for the possible effect of the native tin oxide film, the theoretical and experimental results can be brought into reasonable qualitative and quantitative agreement.


2021 ◽  
Author(s):  
Qingyuan Lin ◽  
Yong Zhao ◽  
Qingchao Sun ◽  
Kunyong Chen

Abstract Bolted connection is one of the most widely used mechanical connections because of its easiness of installation and disassembly. Research of bolted joints mainly focuses on two aspects: high precision tightening and improvement of anti-loosening performance. The under-head bearing friction coefficient and the thread friction coefficient are the two most important parameters that affect the tightening result of the bolted joint. They are also the most critical parameters that affect the anti-loosening performance of the bolted joint. Coulomb friction model is a commonly used model to describe under-head bearing friction and thread friction, which considers the friction coefficient as a constant independent of normal pressure and relative sliding velocity. In this paper, the viscous effect of the under-head bearing friction and thread friction is observed by measuring the friction coefficient of bolted joints. The value of the friction coefficient increases with the increase of the relative sliding velocity and the decrease of the normal pressure. It is found that the Coulomb viscous friction model can better describe the friction coefficient of bolted joints. Taking into account the dense friction effect, the loosening prediction model of bolted joints is modified. The experimental results show that the Coulomb viscous friction model can better describe the under-head bearing friction coefficient and thread friction coefficient. The model considering the dense effect can more accurately predict the loosening characteristics of bolted joints.


2019 ◽  
Vol 10 (1) ◽  
pp. 253-273 ◽  
Author(s):  
Ilya Svetlizky ◽  
Elsa Bayart ◽  
Jay Fineberg

Contacting bodies subjected to sufficiently large applied shear will undergo frictional sliding. The onset of this motion is mediated by dynamically propagating fronts, akin to earthquakes, that rupture the discrete contacts that form the interface separating the bodies. Macroscopic motion commences only after these ruptures have traversed the entire interface. Comparison of measured rupture dynamics with the detailed predictions of fracture mechanics reveals that the propagation dynamics, dissipative properties, radiation, and arrest of these “laboratory earthquakes” are in excellent quantitative agreement with the predictions of the theory of brittle fracture. Thus, interface fracture replaces the idea of a characteristic static friction coefficient as a description of the onset of friction. This fracture-based description of friction additionally provides a fundamental description of earthquake dynamics and arrest.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 448
Author(s):  
Wojciech S. Gora ◽  
Jesper V. Carstensen ◽  
Krystian L. Wlodarczyk ◽  
Mads B. Laursen ◽  
Erica B. Hansen ◽  
...  

In recent years, there has been an increased uptake for surface functionalization through the means of laser surface processing. The constant evolution of low-cost, easily automatable, and highly repeatable nanosecond fibre lasers has significantly aided this. In this paper, we present a laser surface-texturing technique to manufacture a surface with a tailored high static friction coefficient for application within driveshafts of large marine engines. The requirement in this application is not only a high friction coefficient, but a friction coefficient kept within a narrow range. This is obtained by using nanosecond-pulsed fibre lasers to generate a hexagonal pattern of craters on the surface. To provide a suitable friction coefficient, after laser processing the surface was hardened using a chromium-based hardening process, so that the textured surface would embed into its counterpart when the normal force was applied in the engine application. Using the combination of the laser texturing and surface hardening, it is possible to tailor the surface properties to achieve a static friction coefficient of ≥0.7 with ~3–4% relative standard deviation. The laser-textured and hardened parts were installed in driveshafts for ship testing. After successfully performing in 1500 h of operation, it is planned to adopt the solution into production.


Sign in / Sign up

Export Citation Format

Share Document