scholarly journals Preparation of pegylated nano-liposomal formulation containing SN-38: In vitro characterization and in vivo biodistribution in mice

2009 ◽  
Vol 59 (2) ◽  
pp. 133-144 ◽  
Author(s):  
Fatemeh Atyabi ◽  
Anahita Farkhondehfai ◽  
Farnaz Esmaeili ◽  
Rassoul Dinarvand

Preparation of pegylated nano-liposomal formulation containing SN-38:In vitrocharacterization andin vivobiodistribution in mice7-Ethyl-10-hydroxy-camptothecin (SN-38), a metabolite of irinotecan x HCl, is poorly soluble in aqueous solutions and practically insoluble in most physiologically compatible and pharmaceutically acceptable solvents. Formulation of SN-38 in concentrated pharmaceutical delivery systems for parenteral administration is thus very difficult. Due to their biocompatibility and low toxicity, liposomes were considered for the delivery of SN-38. In this study, pegylated liposomes with distearoylphosphatidylcholine, distearoylphosphatidylethanolamine containing SN-38 were prepared and their characteristics, such as particle size, encapsulation efficiency,in vitrodrug release and biodistribution, were investigated. The particle size of liposomes was in the range of 150--200 nm. The encapsulation efficiency andin vitrorelease rate of pegylated liposomes was higher than those of non-pegylated liposomes. As expected, the distribution of pegylated liposomes in body organs such as liver, kidney, spleen and lung was considerably lower than that of non-pegylated liposomes. Also, their blood concentration was at least 50 % higher than that of non-pegylated liposomes.

Author(s):  
Mohsen Hedaya ◽  
Farzana Bandarkar ◽  
Aly Nada

Introduction: The objectives were to prepare, characterize and in vivo evaluate different ibuprofen (IBU) nanosuspensions prepared by ultra-homogenization, after oral administration to rabbits. Methods: The nanosuspensions produced by ultra-homogenization were tested and compared with a marketed IBU suspension for particle size, in vitro dissolution and in vivo absorption. Five groups of rabbits received orally 25 mg/kg of IBU nanosuspension, nanoparticles, unhomogenized suspension, marketed product and untreated suspension. A sixth group received 5 mg/kg IBU intravenously. Serial blood samples were obtained after IBU administration. Results: The formulated nanosuspensions showed significant decrease in particle size. Polyvinyl Pyrrolidone K30 (PP) was found to improve IBU aqueous solubility much better than the other tested polymers. Addition of Tween 80 (TW), in equal amount as PP (IBU: PP:TW, 1:2:2 w/w) resulted in much smaller particle size and better dissolution rate. The Cmax achieved were 14.8±1.64, 11.1±1.37, 9.01±0.761, 7.03±1.38 and 3.23±1.03 μg/ml and the tmax were 36±8.2, 39±8.2, 100±17.3, 112±15 and 105±17 min for the nanosuspension, nanoparticle, unhomogenized suspension, marketed IBU suspension and untreated IBU suspension in water, respectively. Bioavailability of the different formulations relative to the marketed suspension were the highest for nanosuspension> unhomogenized suspension> nanoparticles> untreated IBU suspension. Conclusion: IBU/PP/TW nanosuspensions showed enhanced in vitro dissolution as well as faster rate and higher extent of absorption as indicated from the higher Cmax, shorter tmax and larger AUC. The in vivo data supported the in vitro results. Nanosuspensions prepared by ultra-high-pressure-homogenization technique can be used as a good formulation strategy to enhance the rate and extent of absorption of poorly soluble drugs.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A750-A750
Author(s):  
Sojin Lee ◽  
Joon Young Park ◽  
Goo-Young Kim ◽  
Sang Woo Jo ◽  
Minhyuk Yun ◽  
...  

BackgroundSuccessful clinical translation of mRNA therapeutics requires an appropriate delivery strategy to overcome instability of mRNA and facilitate cellular uptake into the cells.1 Several lipid based nanoparticle approaches that encapsulate mRNA, notably lipid nanoparticle (LNP), have been developed, but their efficiency for delivery to certain target tissues and toxicity profiles still have room for improvement. The application of a novel polymer based nanoparticle technology platform, so called Stability Enhanced Nano Shells (SENS) for mRNA (mSENS) as a mRNA delivery platform for a cancer vaccine was demonstrated.MethodsThe physicochemical properties of mSENS formulation, particle size and encapsulation efficiency, were characterized using dynamic light scattering (DLS) and gel retardation assay. Using luciferase-encoding mRNA, the protein expression levels in vitro and in vivo were evaluated by luciferase assay or bioluminescence imaging (BLI), respectively. For cancer vaccine studies, antigen (tyrosinase-related protein 2 (Trp-2))-specific T cell responses were assessed by immunophenotyping mouse splenocytes using flow cytometry and by the enzyme-linked immunosorbent spot (ELISPOT) assay. The anti-tumor efficacy was studied in B16F10 lung tumor model in C57BL/6 mice. Liver and systemic toxicity of mSENS treated mice was evaluated through blood chemistry and complete blood count (CBC) tests.ResultsA library of mSENS formulations complexed with luciferase-encoding mRNA, were characterized for their particle size, surface charge, encapsulation efficiency, colloidal stability, and in vitro and in vivo luciferase protein expression level. Upon systemic administration in mice, varying biodistribution profiles were observed, implicating the potential for tailored delivery to target tissues. Particularly, cancer vaccine application was further developed leveraging the formulation with preferential spleen delivery. Following vaccination with Trp-2 mRNA encapsulated with mSENS (Trp-2 mRNA-mSENS) in B16F10 tumor bearing mice, strong Trp-2 antigen-specific IFN-γ T-cell responses were observed. Generated anti-tumor immunity also marked suppression of B16F10 lung tumors were observed in Trp-2-mSENS immunized mice compared to non-immunized controls, demonstrating the potential of mSENS as a mRNA delivery platform for the application for vaccine.ConclusionsProprietary biodegradable polymer based-mSENS platform offers an attractive delivery strategy for mRNA by tailoring to specific therapeutic applications. Depending on the application, whether it’s a vaccine or protein replacement, a rationally designed mSENS formulation can efficiently distribute mRNA to specific tissues. In particular, application of a splenic mSENS formulation for a cancer vaccine has been demonstrated in murine tumor model. In summary, mRNA delivery through mSENS platform is expected to provide significant opportunities in clinical development for mRNA therapeutics.Ethics ApprovalThe study was approved by Samyang Biopharmaceuticals’ IACUC (Institutional Animal Care and Use Committee), approval number SYAU-2027.ReferencePiotr S. Kowalski, Arnab Rudra, Lei Miao, and Daniel G. Anderson, delivering the messenger: advances in technologies for therapeutic mRNA delivery. Molecular Therapy Vol. 27 No 4 April 2019.


2019 ◽  
Vol 9 (4-A) ◽  
pp. 425-437
Author(s):  
Khushboo Verma ◽  
Jhakeshwar Prasad ◽  
Suman Saha ◽  
Surabhi Sahu

The aim of this work was to develop and evaluate curcumin loaded liposome and its bio- enhancement. Curcumin was selected as a natural drug for liposome formulation. Curcumin show variety of biological activity but it also shows poor bioavailability due to low aqueous solubility (1 µg/ml), poor absorption and rapid metabolism so that piperine was selected as bio enhancer to improve curcumin bioavailability. Soy lecithin and cholesterol were used to prepared curcumin and curcumin-piperine loaded liposome at different ratio by thin film hydration method because of easy to perform, and high encapsulation rates of lipid. The all liposome formulations (F1-F5) were evaluated by mean particle size, polydispersity index, zeta potential, encapsulation efficiency and drug release. Bioavailability was also determined on rat. Blood samples were collected at specific intervals, and plasma was separated by ultracentrifugation. Plasma was analyzed by high-performance liquid chromatography at 425 nm taking acetonitrile: water (75:25 v/v) acidified with 2% acetic acid as a mobile phase at a flow rate of 0.5 ml/min using C18 column. The mean particle size was found in the range between 800-1100 that indicate liposome are large unilamellar vesical types. By zeta potential study its conform that the all formulation was stable. The encapsulation efficiency of all liposome formulation are varied between 59-67%. In vitro drug release was analyse in 7.4 pH phosphate buffer, the maximum %CDR observed at the 12 hrs., and formulation are follow sustained release thus they reduce metabolism, good absorption rate which improve bioavailability of drug. From in-vivo study, it is clear that curcumin-piperine liposomal formulation, increases Cmax, area under the curve, and mean residence time significantly as compared to pure curcumin and pure curcumin liposome. Keywords: liposome; Curcumin; Piperine, Thin film hydration method; Bioavailability


2013 ◽  
Vol 49 (4) ◽  
pp. 889-901 ◽  
Author(s):  
Trishna Bal ◽  
Shubhranshu Sengupta ◽  
Padala Narasimha Murthy

Inclusion complexes of carvedilol(CR) with hydroxyl propyl beta-cyclodextrin (HPBCD) was prepared using co-grinding technique. Then, the inclusion complex was microencapsulated using combinations of Eudragit NE30D (EU) and sodium alginate (SA) utilizing orifice gelation technique. The formulations were analysed by using Scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), Differential scanning Calorimetry (DSC) and X-ray diffractometer (XRD) and also evaluated for particle size, encapsulation efficiency, production yield, swelling capacity, mucoadhesive properties, zeta potential and drug release. The microcapsules were smooth and showed no visible cracks and extended drug release of 55.2006% up to 12 hours in phosphate buffer of pH 6.8, showing particle size within the range of 264.5-358.5 µm, and encapsulation efficiency of 99.337±0.0100-66.2753±0.0014%.The in vitro release data of optimized batch of microcapsules were plotted in various kinetic equations to understand the mechanisms and kinetics of drug release, which followed first order kinetics, value of "n" is calculated to be 0.459 and drug release was diffusion controlled. The mice were fed with diet for inducing high blood pressure and the in vivo antihypertensive activity of formulations was carried out administering the optimized formulations and pure drug separately by oral feeding and measured by B.P Monwin IITC Life Science instrument and the results indicated that the bioavailability of carvedilol was increased both in vitro and in vivo with the mucoadhesive polymers showing primary role in retarding the drug release.


Author(s):  
Muhammad Wahab Amjad ◽  
Nawaf Mohamed Alotaibi

Millions of people are affected globally by alzheimer’s disease and it is regarded as a dangerous progressive medical and socio-economic burden. The drug delivery to brain is hindered due to the presence of blood brain barrier. Nanoparticle mediated drug delivery is a promising approach in this regard. Chitosan is a hydrophilic polysaccharide polymer of N-acetylglycosamine and glucosamine. Owing to its biodegradability, nontoxicity and biocompatibility it is regarded as a safe excipient. The aim of the study was to fabricate donepezil-loaded sustained release chitosan nanoparticles as a simple way to deliver nano-drugs to the brain. The nanoparticles were fabricated using ionic gelation method using different concentrations of Sodium tripolyphosphate (TPP) and chitosan. The fabricated nanoparticles were assessed for particle size, zeta potential, encapsulation efficiency and in vitro drug release. The effect of sonication time on the particle size of nanoparticles was also studied. The nanoparticles exhibited mean particle size (between 135-1487 nm) and zeta potential (between +3.9-+38mV) depending on chitosan and TPP concentration used. The rise in the sonication time from 25 to 125 sec exhibited a decrease in particle size. The encapsulation efficiency was found to be in the range of 39.1-74.4%. Sustained and slow release of donepezil at a constant rate was exhibited from nanoparticles. The nanoparticles show potential to deliver donepezil to brain with enhanced encapsulation efficiency.


Sign in / Sign up

Export Citation Format

Share Document