scholarly journals Formulation and in vitro Characterization of Donepezil-loaded Chitosan Nanoparticles

Author(s):  
Muhammad Wahab Amjad ◽  
Nawaf Mohamed Alotaibi

Millions of people are affected globally by alzheimer’s disease and it is regarded as a dangerous progressive medical and socio-economic burden. The drug delivery to brain is hindered due to the presence of blood brain barrier. Nanoparticle mediated drug delivery is a promising approach in this regard. Chitosan is a hydrophilic polysaccharide polymer of N-acetylglycosamine and glucosamine. Owing to its biodegradability, nontoxicity and biocompatibility it is regarded as a safe excipient. The aim of the study was to fabricate donepezil-loaded sustained release chitosan nanoparticles as a simple way to deliver nano-drugs to the brain. The nanoparticles were fabricated using ionic gelation method using different concentrations of Sodium tripolyphosphate (TPP) and chitosan. The fabricated nanoparticles were assessed for particle size, zeta potential, encapsulation efficiency and in vitro drug release. The effect of sonication time on the particle size of nanoparticles was also studied. The nanoparticles exhibited mean particle size (between 135-1487 nm) and zeta potential (between +3.9-+38mV) depending on chitosan and TPP concentration used. The rise in the sonication time from 25 to 125 sec exhibited a decrease in particle size. The encapsulation efficiency was found to be in the range of 39.1-74.4%. Sustained and slow release of donepezil at a constant rate was exhibited from nanoparticles. The nanoparticles show potential to deliver donepezil to brain with enhanced encapsulation efficiency.

2011 ◽  
Vol 282-283 ◽  
pp. 539-544 ◽  
Author(s):  
Jia Lei Li ◽  
Yuan Gang Zu ◽  
Xiu Hua Zhao ◽  
Zhi Gang An ◽  
Xiao Yu Sui ◽  
...  

Epigallocatechin-3-gallate (EGCG), a principal polyphenolic, which is most abundant and active component in tea. It is considered key to these healthful qualities. However, EGCG used in clinical application which is still shortcomings of short half-life and low bioavailability. Chitosan (CS) has been widely used in pharmaceutical and medical areas, particularly for its potential in the development of controlled release drug delivery systems due to its well properties. In this study, we prepared EGCG-loaded chitosan nanoparticles by ionic polymeric method using sodium tripolyphosphate(TPP) as ionic polymeric agent successfully. Results controlled conditions (concentration of CS, 2 mg/mL; pH = 5.4; volume of TPP(0.5 mg/mL), 6.6 mL; amount of EGCG, 15 mg; ionic polymeric time, 24 h at room temperature (0.5 mL/min))volume of TPP(0.5 mg/mL), 6.6 mL; amount of EGCG, 15 mg; ionic polymeric time, 24 h at room temperature (0.5 mL/min)) for entrapment efficiency, loading efficiency, mean particle size and Zeta potential, were found to be 62.3 %, 33.8 %, 141.5 ± 0.4 nm and -31.21 ± 0.54 mV, respectively, and CS-EGCG-NPS have well property of sustained release.


Author(s):  
SUVARNA G. BHOKARE ◽  
RAJENDRA P. MARATHE

Objective: The objective of the present study was to develop sustained release biodegradable polymeric nanoparticles of rosuvastatin calcium. Methods: Nanoparticles were prepared by modified ionotropic gelation method using 3² full factorial designs. From the preliminary trials, the constraints for independent variables X1 (concentration. of chitosan) and X2 (concentration. of sodium tripolyphosphate) have been fixed. Factors included concentration of chitosan and sodium tripolyphosphate, have been examined to investigate effect on particle size, encapsulation efficiency, zeta potential, % release, scanning electron microscopy, Fourier transfer infrared study and X-ray diffraction and release study of rosuvastatin calcium nanoparticles. 0 Results: The prepared nanoparticles were white, free-flowing and spherical in shape. The infrared spectra showed stable character of rosuvastatin calcium in the drug-loaded nanoparticles and revealed the absence of drug polymer interactions. The chitosan nanoparticles have a particle diameter ranging approximately 114.5±3.61 to 724±.2.51 nm and a zeta potential-13.12 to-52.63 mV. The in vitro release behavior from all the drug loaded batches were found to follow first order and provided sustained release over a period of 10 h. The Zeta potential of all the batches were in the range of-13.12 to-52.63 mv. The release profiles of all batches were very well fitted by Korsmeyer Peppas model. Conclusion: The best-fit release kinetics was achieved with Korsmeyer peppas model. The release of rosuvastatin calcium was influenced by the drug to polymer ratio and particle size. These results indicate that rosuvastatin calcium nanoparticles could be effective in sustaining drug release for a prolonged period.


2021 ◽  
Vol 08 ◽  
Author(s):  
Sanjeevani Deshkar ◽  
Sumit Sikchi ◽  
Anjali Thakre ◽  
Rupali Kale

Objective: The aim of the present study was to design a surface modified chitosan nanoparticle system for vaginal delivery of Acyclovir for effective drug uptake into vaginal mucosa. Method: Acyclovir loaded chitosan nanoparticles, with and without modification by poloxamer 407, were prepared by ionic gelation method. The effects of two independent variables, chitosan to sodium tripolyphosphate mass ratio (X1) and acyclovir concentration (X2), on drug entrapment in nanoparticles, were studied using 32 full factorial design. The surface response and counter plots were drawn to facilitate an understanding of the contribution of the variables and their interaction. The nanoparticles were evaluated for drug entrapment, size with zeta potential, morphological analysis by TEM, solid state characterization by FTIR, DSC, XRD, in vitro dissolution, in vitro cell uptake using HeLa cell line and in vivo vaginal irritation test in Wistar rats. Results: Chitosan nanoparticle formulation with chitosan to sodium tripolyphosphate mass ratio of 2:1 and acyclovir concentration of 2 mg/mL resulted in highest entrapment efficiency. Resulting nanoparticles revealed spherical morphology with particle size of 191.2 nm. The surface modification of nanoparticles with Poloxamer resulted in higher drug entrapment (74.3±1.5%), higher particle size (391.1 nm) as a result of dense surface coating, lower zeta potential and sustained drug release compared to unmodified nanoparticles. The change in the crystallinity of drug during nanoparticle formulation was observed in DSC and XRD study. Cellular uptake of Poloxamer modified chitosan nanoparticles was found to be higher than chitosan nanoparticles in HeLa cells. Safety of nanoparticle formulations by vaginal route was evident when tested in female rats. Conclusion: Conclusively, Poloxamer modified CH NP could serve as a promising and safe delivery system with enhanced cellular drug uptake.


Author(s):  
TAIHASEEN MOMIN ◽  
ARVIND GULBAKE

Objective: Chitosan nanoparticles (ChNP’s) have been widely studied for drug and gene delivery. In this study, we prepared ChNP’s for co-delivery of doxorubicin (DOX) and siRNA for cancer treatment. Methods: The ionic gelation method was used to develop ChNP’s. The positively charged DOX and negatively charged siRNA encapsulated into ChNP’s. The particle size and zeta potential of the developed ChNP’s were studied by particle size analyzer and morphology was examined by TEM. Encapsulation of DOX in ChNP’s was confirmed by FTIR spectroscopy. The encapsulation efficiency and in vitro release of DOX were studied by UV-Vis spectrophotometry. The siRNA loading into ChNP’s was confirmed by gel retardation assay. Results: The developed ChNP’s showed particle size ranged from 127±6.5 to 215±8.5 nm with zeta potential ranged from 16.5±0.3 to 25.8±0.3. Transmission Electron Micrograph showed DOX and siRNA encapsulated ChNP’s are polydisperse and spherical in nature. FTIR study confirmed the binding of DOX with ChNP’s with absorption peaks at 1016 cm-1,1316 cm-1, 1412 cm-1, 1645 cm-1 and 3370 cm-1. The TPP:Ch ratio 0.1:0.5 showed the highest encapsulation efficiency 69±3.24%, with initial burst release and then sustained or slow release of DOX. Agarose gel retardation study confirmed the encapsulation of siRNA in ChNP’s by retarded migration of siRNA-ChNP’s in comparison with naked siRNA. Conclusion: The developed ChNP’s successfully encapsulated the DOX and siRNA and showed the sustain release of DOX. In conclusion, our study shown that ChNP’s is having a potential of co-loading of DOX-siRNA as an efficient drug delivery system for the treatment of various cancers such as colorectal cancer, breast cancer etc.


2020 ◽  
Vol 11 (1) ◽  
pp. 532-545
Author(s):  
Ganesh Narayan Sharma ◽  
Praveen Kumar Ch ◽  
Birendra Shrivastava ◽  
Kumar B ◽  
Arindam Chatterjee

The present research was designed to improve the permeability of sulfasalazine by loading it into chitosan nanoparticles using the ionic gelation method. The process parameters were screened and optimized through Box-Behnken design. 13 formulations containing sulfasalazine chitosan-based nanoparticles (SCSNPs) were optimized using particle size, zeta potential, and % encapsulation efficiency as responses. Results were optimized based on the desirability function shown in 2D contour plots and 3D response surface plots. The effect of every factor on responses was statistically analyzed using ANOVA and p-Value, and the correlation coefficient of all the responses was found to be >0.99 and >0.96 for optimized CSNPs and optimized SCSNPs respectively with p<0.05. From the predicted and observed values of responses, the optimized formulation (SCSNPs) has a particle size of 261±3.06 nm, with an encapsulation efficiency of 81.3±5.3%. Morphology of the particles using scanning electron microscopy reveals nearly spherical shaped particles with a zeta potential of +41.4±0.5 mV. In-vitro studies acknowledge that sulfasalazine was released in a sustained manner for about 24 hrs in simulated colonic fluid pH 7 and phosphate buffer pH 7.4,  when compared to a simulated colonic fluid at fed (pH 6) and fasted state (pH 7.8). Optimized SCSNPs followed Korsmeyer Peppas kinetics with a drug release mechanism as non-fickian diffusion (anomalous transport).


2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


Author(s):  
Gülsel Yurtdaş Kırımlıoğlu ◽  
Sinan Özer ◽  
Gülay Büyükköroğlu ◽  
Yasemin Yazan

Background: Considering the low ocular bioavailability of conventional formulations used for ocular bacterial infection treatment, there’s a need for designing efficient novel drug delivery systems that may enhance of precorneal retention time and corneal permeability. Aim and Objective: The current research focuses on developing nanosized and non-toxic Eudragit® RL 100 and Kollidon® SR nanoparticles loaded with moxifloxacin hydrochloride (MOX) for its prolonged release to be promising for effective ocular delivery. Methods: In this study, MOX was incorporation was carried out by spray drying method aiming ocular delivery. In vitro characteristics were evaluated in detail with different methods. Results: MOX was successfully incorporated into Eudragit® RL 100 and Kollidon® SR polymeric nanoparticles by spray-drying process. Particle size, zeta potential, entrapment efficiency, particle morphology, thermal, FTIR, XRD and NMR analyses and MOX quantification using HPLC method were carried out to evaluate the nanoparticles prepared. MOX loaded nanoparticles demonstrated nanosized and spherical shape while in vitro release studies demonstrated modified release pattern which followed Korsmeyer-Peppas kinetic model. Following successful incorporation of MOX into the nanoparticles, the formulation (MOX: Eudragit® RL 100, 1:5) (ERL-MOX 2) was selected for further studies by the reason of its better characteristics like cationic zeta potential, smaller particle size, narrow size distribution and more uniform prolonged release pattern. Moreover, ERL-MOX 2 formulation remained stable for 3 months and demonstrated higher cell viability values for MOX. Conclusion: In vitro characterization analyses showed that non-toxic, nano-sized and cationic ERLMOX 2 formulation has the potential of enhancing ocular bioavailability.


Author(s):  
S. PATHAK ◽  
S. P. VYAS ◽  
A. PANDEY

Objective: The objective of the present study was to develop, optimize, and evaluate Ibandronate-sodium loaded chitosan nanoparticles (Ib-CS NPs) to treat osteoporosis. Methods: NPs were prepared by the Ionic gelation method and optimized for various parameters such as the effect of concentration of chitosan, sodium tripolyphosphate (TPP), and pH effect on particle size polydispersity index (PDI), zeta potential, and entrapment efficiency. The prepared nanoparticles were characterized using particle size analyzer (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-Transform Infrared spectroscopy (FTIR).  Results: Formulated NPs were obtained in the average nano size in the range below 200 nm in TEM, SEM, and DLS studies. The particle size and encapsulation efficiency of the optimized formulation were 176.1 nm and 63.28%, respectively. The release profile of NPs was depended on the dissolution medium and followed the First-order release kinetics. Conclusion: Bisphosphonates are the most commonly prescribed drugs for treating osteoporosis in the US and many other countries, including India. Ibandronate is a widely used anti-osteoporosis drug, exhibits a strong inhibitory effect on bone resorption performed by osteoclast cells. Our results indicated that Ibandronate sodium-loaded chitosan nanoparticles provide an effective medication for the treatment of osteoporosis.


2015 ◽  
Vol 51 (2) ◽  
pp. 467-477 ◽  
Author(s):  
Abdul Baquee Ahmed ◽  
Ranjit Konwar ◽  
Rupa Sengupta

<p>In this study, we prepared atorvastatin calcium (AVST) loaded chitosan nanoparticles to improve the oral bioavailability of the drug. Nanoparticles were prepared by solvent evaporation technique and evaluated for its particle size, entrapment efficiency, zeta potential, <italic>in vitro</italic> release and surface morphology by scanning electron microscopy (SEM). In addition, the pharmacokinetics of AVST from the optimized formulation (FT5) was compared with marketed immediate release formulation (Atorva<sup>(r))</sup> in rabbits. Particle size of prepared nanoparticles was ranged between 179.3 ± 7.12 to 256.8 ± 8.24 nm with a low polydispersity index (PI) value. Zeta potential study showed that the particles are stable with positive values between 13.03 ± 0.32 to 46.90 ± 0.49 mV. FT-IR studies confirmed the absence of incompatibility of AVST with excipient used in the formulations. <italic>In vitro</italic> release study showed that the drug release was sustained for 48 h. Results of pharmacokinetics study showed significant changes in the pharmacokinetic parameter (2.2 fold increase in AUC) of the optimized formulation as compared to marketed formulation (Atorva<sup>(r))</sup>. Thus, the developed nanoparticles evidenced the improvement of oral bioavailability of AVST in rabbit model.</p>


Bio-Research ◽  
2020 ◽  
Vol 18 (2) ◽  
Author(s):  
EB Onuigbo ◽  
C Anozie-Ikeanyi ◽  
NE Edeh ◽  
CO Eze ◽  
TH Gugu

The study seeks to evaluate nanoparticles based on chitosan for enhanced delivery of ampicillin in plasmid-mediated drug resistance. Serial dilutions of a mixed population of E. coli was plated on nutrient agar and streaked on Replica-plate 25 random colonies using MacConkey agar with or without ampicillin (100 µg/ml) daily for 96 h. Nanoparticles were prepared by cross-linking chitosan with sodium tripolyphosphate with ampicillin trihydrate adsorbed. Three different batches were prepared for optimization. The nanoparticles were optimized based on encapsulation efficiency, in vitro drug release, pH stability and microbiological assay using two laboratory strains of E. coli. Increased resistance to ampicillin due to possible plasmid transfer was established in vitro after 96 h. The encapsulation efficiency of the three batches was between 21-57 %. The drug release showed a burst effect and slow extended release over 8 h and reached a peak of about 19 % release at the 6 and 7 h in Batch A, B and C. The pH of the particles was stable over a period of 6 d. The nanoparticles containing only 0.075 mg of ampicillin dropped in an agar well plate inoculated with 1 ml of E. coli J62 lac pro trp hispFlac::Tn3 (AmpR) gave an IZD of ≥ 25 mm. Chitosan nanoparticles holds good potentials in potentiating the antibacterial effect of ampicillin against possible plasmid-mediated drug resistance


Sign in / Sign up

Export Citation Format

Share Document