scholarly journals Protozoan impact on bacterial biofilm formation

2010 ◽  
Vol 47 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Krzysztof Rychert ◽  
Thomas Neu

Protozoan impact on bacterial biofilm formationConfocal laser scanning microscopy in combination with digital image analysis was used to assess the impact of protozoa on bacterial colonisation of surfaces. Bacterial biofilms were developed from activated sludge in microscope flow cells and were exposed to the grazing pressure of protozoa. The protozoan community from healthy activated sludge and a culture of flagellateBodo saltanswere used as grazers. Experiments comprised 48-h incubations in 3 treatment variants: bacteria with protozoa, bacteria with protozoa added after some time and bacteria without protozoa. When necessary, the elimination of protozoa from the inoculum was carried out with cycloheximide and NiSO4. Experiments demonstrated that protozoa from healthy activated sludge initially disturbed the biofilm development but later they could stimulate its growth. Similar results could be established in the experiment withBodo saltans(inoculum: 1000 cells/ml), however differences were not statistically significant. The finding that protozoa support biofilm development during specific stages may be relevant for biofilm studies with mixed environmental biofilm communities.

2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


2010 ◽  
Vol 59 (10) ◽  
pp. 1225-1234 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
O. L. T. Lam ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on Candida biofilm formation in vitro. The effect of the LPS of Pseudomonas aeruginosa, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium on six different species of Candida, comprising Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA 646, was studied using a standard biofilm assay. The metabolic activity of in vitro Candida biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of C. albicans was significantly stimulated by Pseudomonas and Klebsiella LPS. A significant inhibition of Candida adhesion was noted for the following combinations: C. glabrata with Pseudomonas LPS, C. tropicalis with Serratia LPS, and C. glabrata, C. parapsilosis or C. dubliniensis with Salmonella LPS (P<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: C. albicans/C. glabrata with Klebsiella LPS, C. glabrata/C. tropicalis/C. krusei with Salmonella LPS. In contrast, a significant inhibition of biofilm formation was observed in C. glabrata/C. dubliniensis/C. krusei with Pseudomonas LPS, C. krusei with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. parapsilosis/C. dubliniensis /C. krusei with Salmonella LPS (P<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: C. glabrata/C. tropicalis with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. glabrata with Salmonella LPS, and a significant retardation was noted for C. parapsilosis/C. dubliniensis/C. krusei with Pseudomonas LPS, C. tropicalis with Serratia LPS, C. glabrata/C. parapsilosis/C. dubliniensis with Klebsiella LPS and C. dubliniensis with Salmonella LPS (P<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated Candida spp. was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate in vitro Candida biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.


2018 ◽  
Vol 45 (4) ◽  
pp. 1399-1409 ◽  
Author(s):  
Supeng Yin ◽  
Bei Jiang ◽  
Guangtao Huang ◽  
Yulong Zhang ◽  
Bo You ◽  
...  

Background/Aims: N-acetylcysteine (NAC) is a novel and promising agent with activity against bacterial biofilms. Human serum also inhibits biofilm formation by some bacteria. We tested whether the combination of NAC and human serum offers greater anti-biofilm activity than either agent alone. Methods: Microtiter plate assays and confocal laser scanning microscopy were used to evaluate bacterial biofilm formation in the presence of NAC and human serum. qPCR was used to examine expression of selected biofilm-associated genes. Extracellular matrix (ECM) was observed by transmission electron microscopy. The antioxidants GSH or ascorbic acid were used to replace NAC, and human transferrin, lactoferrin, or bovine serum albumin were used to replace serum proteins in biofilm formation assays. A rat central venous catheter model was developed to evaluate the effect of NAC on biofilm formation in vivo. Results: NAC and serum together increased biofilm formation by seven different bacterial strains. In Staphylococcus aureus, expression of genes for some global regulators and for genes in the ica-dependent pathway increased markedly. In Pseudomonas aeruginosa, transcription of las, the PQS quorum sensing (QS) systems, and the two-component system GacS/GacA increased significantly. ECM production by S. aureus and P. aeruginosa was also enhanced. The potentiation of biofilm formation is due mainly to interaction between NAC and transferrin. Intravenous administration of NAC increased colonization by S. aureus and P. aeruginosa on implanted catheters. Conclusions: NAC used intravenously or in the presence of blood increases bacterial biofilm formation rather than inhibits it.


Author(s):  
María Consuelo Latorre ◽  
María Jesús Pérez-Granda ◽  
Paul B Savage ◽  
Beatriz Alonso ◽  
Pablo Martín-Rabadán ◽  
...  

Abstract Background Ventilator-associated pneumonia is one of the most common nosocomial infections, caused mainly by bacterial/fungal biofilm. Therefore, it is necessary to develop preventive strategies to avoid biofilm formation based on new compounds. Objectives We performed an in vitro study to compare the efficacy of endotracheal tubes (ETTs) coated with the ceragenin CSA-131 and that of uncoated ETTs against the biofilm of clinical strains of Pseudomonas aeruginosa (PA), Escherichia coli (EC) and Staphylococcus aureus (SA). Methods We applied an in vitro bench top model using coated and uncoated ETTs that were treated with three different clinical strains of PA, EC and SA for 5 days. After exposure to biofilm, ETTs were analysed for cfu count by culture of sonicate and total number of cells by confocal laser scanning microscopy. Results The median (IQR) cfu/mL counts of PA, EC and SA in coated and uncoated ETTs were, respectively, as follows: 1.00 × 101 (0.0–3.3 × 102) versus 3.32 × 109 (6.6 × 108–3.8 × 109), P &lt; 0.001; 0.0 (0.0–5.4 × 103) versus 1.32 × 106 (2.3 × 103–5.0 × 107), P &lt; 0.001; and 8.1 × 105 (8.5 × 101–1.4 × 109) versus 2.7 × 108 (8.6 × 106–1.6 × 1011), P = 0.058. The median (IQR) total number of cells of PA, EC and SA in coated and non-coated ETTs were, respectively, as follows: 11.0 [5.5–not applicable (NA)] versus 87.9 (60.5–NA), P = 0.05; 9.1 (6.7–NA) versus 62.6 (42.0–NA), P = 0.05; and 97.7 (94.6–NA) versus 187.3 (43.9–NA), P = 0.827. Conclusions We demonstrated significantly reduced biofilm formation in coated ETTs. However, the difference for SA was not statistically significant. Future clinical studies are needed to support our findings.


2007 ◽  
Vol 73 (19) ◽  
pp. 6233-6240 ◽  
Author(s):  
S. D. Weber ◽  
W. Ludwig ◽  
K.-H. Schleifer ◽  
J. Fried

ABSTRACT Aerobic activated sludge granules are dense, spherical biofilms which can strongly improve purification efficiency and sludge settling in wastewater treatment processes. In this study, the structure and development of different granule types were analyzed. Biofilm samples originated from lab-scale sequencing batch reactors which were operated with malthouse, brewery, and artificial wastewater. Scanning electron microscopy, light microscopy, and confocal laser scanning microscopy together with fluorescence in situ hybridization (FISH) allowed insights into the structure of these biofilms. Microscopic observation revealed that granules consist of bacteria, extracellular polymeric substances (EPS), protozoa and, in some cases, fungi. The biofilm development, starting from an activated sludge floc up to a mature granule, follows three phases. During phase 1, stalked ciliated protozoa of the subclass Peritrichia, e.g., Epistylis spp., settle on activated sludge flocs and build tree-like colonies. The stalks are subsequently colonized by bacteria. During phase 2, the ciliates become completely overgrown by bacteria and die. Thereby, the cellular remnants of ciliates act like a backbone for granule formation. During phase 3, smooth, compact granules are formed which serve as a new substratum for unstalked ciliate swarmers settling on granule surfaces. These mature granules comprise a dense core zone containing bacterial cells and EPS and a loosely structured fringe zone consisting of either ciliates and bacteria or fungi and bacteria. Since granules can grow to a size of up to several millimeters in diameter, we developed and applied a modified FISH protocol for the study of cryosectioned biofilms. This protocol allows the simultaneous detection of bacteria, ciliates, and fungi in and on granules.


2004 ◽  
Vol 53 (7) ◽  
pp. 679-690 ◽  
Author(s):  
Andres Plata Stapper ◽  
Giri Narasimhan ◽  
Dennis E. Ohman ◽  
Johnny Barakat ◽  
Morten Hentzer ◽  
...  

Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate-overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in biofilm formation. These strains, PAO1, Alg+ PAOmucA22 and Alg− PAOalgD, tagged with green fluorescent protein, were grown in a continuous flow cell system to characterize the developmental cycles of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (bip) and Community Statistics (comstat) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating that the production of alginate is not critical for biofilm formation. Observation over a period of 5 days indicated a three-stage development pattern consisting of initiation, establishment and maturation. Furthermore, this study showed that phenotypically distinguishable biofilms can be quantitatively differentiated.


2007 ◽  
Vol 189 (6) ◽  
pp. 2531-2539 ◽  
Author(s):  
Sünje Johanna Pamp ◽  
Tim Tolker-Nielsen

ABSTRACT Recent studies have indicated that biosurfactants produced by Pseudomonas aeruginosa play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. Through the use of flow cell technology and enhanced confocal laser scanning microscopy, we have obtained results which suggest that the biosurfactants produced by P. aeruginosa play additional roles in structural biofilm development. We present genetic evidence that during biofilm development by P. aeruginosa, biosurfactants promote microcolony formation in the initial phase and facilitate migration-dependent structural development in the later phase. P. aeruginosa rhlA mutants, deficient in synthesis of biosurfactants, were not capable of forming microcolonies in the initial phase of biofilm formation. Experiments involving two-color-coded mixed-strain biofilms showed that P. aeruginosa rhlA mutants were defective in migration-dependent development of mushroom-shaped multicellular structures in the later phase of biofilm formation. Experiments involving three-color-coded mixed-strain P. aeruginosa biofilms demonstrated that the wild-type and rhlA and pilA mutant strains formed distinct subpopulations on top of each other dependent on their ability to migrate and produce biosurfactants.


2020 ◽  
Author(s):  
Na Peng ◽  
Peng Cai ◽  
Monika Mortimer ◽  
Yichao Wu ◽  
Chunhui Gao ◽  
...  

Abstract Background Bacterial biofilms are a surface-adherent microbial community in which individual cells are surrounded by a self-produced extracellular matrix of polysaccharide, extracellular DNA (eDNA) and proteins. Interactions among matrix components within the biofilms are responsible for creating an adaptable structure during biofilm development. However, it is unclear how the interaction among matrix components contributes to the construction of the three-dimensional (3D) biofilm architecture. Results DNase I treatment could significantly inhibit B. subtilis biofilm formation in early phases. Confocal laser scanning microscopy (CLSM) and image analysis revealed that eDNA was cooperative with exopolysaccharide (EPS) in early stages of B. subtilis biofilm development, while EPS played a major structural role in the later stages. In addition, deletion of EPS production gene epsG in B. subtilis SBE1 resulted in loss of the interaction between EPS and eDNA, and reduction of biofilm biomass in pellicles at air-liquid interface. The physical interaction between these two essential biofilm matrix components was confirmed by isothermal titration calorimetry (ITC). Conclusions The biofilm 3D structures become interconnected through surrounding eDNA and EPS. eDNA interacts with EPS in the early phases of biofilm development, while EPS mainly participates in the maturation of biofilm. The findings of this study provide better understanding of the role of interaction between eDNA and EPS in shaping the biofilm 3D matrix structure and biofilm formation.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiuxiu Hou ◽  
Keyong Yuan ◽  
Zhengwei Huang ◽  
Rui Ma

Objective. To compare the effects of bleaching associated with Er:YAG and Nd:YAG laser on enamel structure and mixed biofilm formation on teeth surfaces. Materials and Methods. Sixty-eight enamel samples were randomly divided into four groups ( n = 17 ), control, Opalescence Boost only, Opalescence Boost plus Er: YAG laser, and Opalescence Boost plus Nd:YAG laser. The structure was observed using SEM after bleaching. Subsequently, the treated enamel samples were also cultured in suspensions of Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, and Fusobacterium nucleatum (Fn) for 24 and 48 h. Biofilm formation was quantified by crystal violet staining, and the structure was visualized by confocal laser scanning microscopy. The data were analyzed using the Kruskal-Wallis method. Results. The enamel structure significantly changed after bleaching. There was no obvious difference in the biofilm formation after 24 h; however, after 48 hours, the amount of biofilm increased significantly. Remarkably, the amount was significantly higher on enamel bleached only, however, there was no significant difference between samples bleached with Er:YAG or Nd:YAG laser compared to the control. Conclusions. Bleaching only appeared to markedly promote biofilm formation after 48 h, and the biofilms on samples bleached with Er:YAG or Nd:YAG laser did not change significantly, showing that bleaching with Er:YAG or Nd:YAG laser can be safely applied in clinical practice.


Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 474
Author(s):  
Inés Pradal ◽  
Jaime Esteban ◽  
Arancha Mediero ◽  
Marta García-Coca ◽  
John Jairo Aguilera-Correa

Mycobacterium chimaera is an opportunistic slowly growing non-tuberculous mycobacteriumof increasing importance due to the outbreak of cases associated with contaminated 3T heater-cooler device (HCD) extracorporeal membrane oxygenator (ECMO). The aim of this study was to evaluate the effect of pre-treating a surface with a Methylobacterium sp. CECT 7180 extract to inhibit the M. chimaera ECMO biofilm as well as of the treatment after different dehydration times. Surface adherence, biofilm formation and treatment effect were evaluated by estimating colony-forming units (CFU) per square centimeter and characterizing the amount of covered surface area, thickness, cell viability, and presence of intrinsic autofluorescence at different times using confocal laser scanning microscopy and image analysis. We found that exposing a surface to the Methylobacterium sp. CECT 7180 extract inhibited M. chimaera ECMO biofilm development. This effect could be result of the effect of Methylobacterium proteins, such as DNaK, trigger factor, and xanthine oxidase. In conclusion, exposing a surface to the Methylobacteriumsp. extract inhibits M. chimaera ECMO biofilm development. Furthermore, this extract could be used as a pre-treatment prior to disinfection protocols for equipment contaminated with mycobacteria after dehydration for at least 96 h.


Sign in / Sign up

Export Citation Format

Share Document