Assessment of Energy Efficient LED Ballasts Based on their Weight and Size

Author(s):  
Irena Milashevski ◽  
Oleg Tetervenok ◽  
Ilya Galkin

Assessment of Energy Efficient LED Ballasts Based on their Weight and Size LED elements always require some electronic ballast that may consist of a primary power supply and a number of secondary dimmers for light regulation. These circuits can be implemented as DC/DC converters. In the paper buck and boost dimmers are investigated from the point of view of their weight and size, that are close related to their losses. The analysis is provided for various modulation techniques and configurations of the converters. The above mention converters are investigated analytically, through simulation and experimentally.

2020 ◽  
Vol 170 ◽  
pp. 01002
Author(s):  
Subbarao Yarramsetty ◽  
MVN Siva Kumar ◽  
P Anand Raj

In current research, building modelling and energy simulation tools were used to analyse and estimate the energy use of dwellings in order to reduce the annual energy use in multifamily dwellings. A three-story residential building located in Kabul city was modelled in Revit and all required parameters for running energy simulation were set. A Total of 126 experiments were conducted to estimate annual energy loads of the building. Different combinations from various components such as walls, roofs, floors, doors, and windows were created and simulated. Ultimately, the most energy efficient option in the context of Afghan dwellings was figured out. The building components consist of different locally available construction materials currently used in buildings in Afghanistan. Furthermore, the best energy efficient option was simulated by varying, building orientation in 15-degree increments and glazing area from 10% to 60% to find the most energy efficient combination. It was found that combination No. 48 was best option from energy conservation point of view and 120-degree rotational angle from north to east, of the existing building was the most energy-efficient option. Also, it was observed that 60% glazing area model consumed 24549 kWh more electricity compared to the one with 10% glazing area.


2018 ◽  
Vol 170 ◽  
pp. 03017 ◽  
Author(s):  
Alexey Dmitriev ◽  
Vyacheslav Gerasimov

The expediency of using a variable frequency drive for pumping units was repeatedly proved both from the point of view of the economic component and the technological one. However, the construction of automatic control systems for the operating parameters of pumping stations is mainly based on maintaining the pressure setpoint and does not include monitoring the efficiency of the aggregates working in the group and, the more so, its regulation. In this paper, an algorithm is developed for the energy efficient management of centrifugal pump units, which allows not only maintaining the pressure setpoint, but also optimizing their efficiency.


Author(s):  
Aisha Ajeerah Azahar ◽  
◽  
Nor Akmal Mohd Jamail ◽  
Amal Hayati Mat Isa ◽  
Fatin Nazirah Md Sani ◽  
...  

Economical home system can be defined as one realization of home that have a cost-effective ideal by using specific set of technologies combined with the renewable energy as a power supply. This system has a highly advance for lighting, temperature control, socket and own power supply by using solar panel. This system is developed in this project and focused on B40 community that represents the bottom 40% of income earners and also this project becomes suitable for this community for getting an energy efficiency system. Due to the COVID-19, B40 households were reported to have lost their jobs causing financial hardship and had to face the issue of high electricity bills which are very burdensome for them at all in order to pay the cost electricity for monthly. The aim of the article is to design and simulate the solar power system including battery storage in suitable software for a residential house especially in B40 community home and also to analyze the potential of battery storage in order to store the energy from solar panel. Therefore, the economical electricity home system using solar energy for B40 community is proposed in this project for producing an energy efficient system at home. In addition, an electrical floor plan and floor plan of B40 community home is designed in the SketchUp software that using basic electrical equipment such as lighting, ceiling fan and socket. The system is developed by using the MATLAB software in order to produce the result of energy efficiency by using the renewable energy which is solar system and also battery storage. According to the data produced from the calculation of old bills and new bills, the energy consumptions are calculated and also be compared before and after using the renewable energy which is using solar system. The data obtained through calculation of maximum demand in new bill is used in the simulation of solar system in MATLAB software. The results obtained show that after using an energy-efficient load, the monthly new bill is around RM 27.79 which is around RM 10.75 less than the monthly old bill before using an energy-efficient load. It can be concluded that the use of renewable energy in B40 community home can save the energy and also money.


Author(s):  
Leonid Yuferev ◽  
Alexander Sokolov

This chapter describes how with the artificial cultivation of plants lamps are required with a certain spectrum of radiation. For lighting plants have developed a special lamp. Industry produces special gas discharge lamp. In these lamps a fixed range of radiation. Recently, there were light sources for plants on LEDs. LEDs can create light with any spectrum range from 360 to 800 nm. The authors of the article give a technique for modeling the spectrum of luminaires and calculating LED lamps for plants. The tests of the developed lamps for plants in dark chambers are given. A description of a resonant regulated power supply system for LED luminaires is given. In the proposed system when the frequency changes radiation power.


2016 ◽  
Vol 835 ◽  
pp. 501-505
Author(s):  
Sarka Korbelova ◽  
Lucie Kucerova

The society lays stress on today's buildings, particularly in terms of energy-efficient buildings and ecology of buildings. Accordingly, not only from a technical technical point of view, it is important to give sufficient attention to the foundations of building. The popular way of foundation of lightweight buildings is due to the growing interest in timber houses the foundation above a ventilated air gap so called Crawl Space. The article deals with the temperature and humidity field which is located in the air gap under the construction of wooden building in the climatic conditions of the Czech Republic.


Author(s):  
Henrik C. Pedersen ◽  
Torben O. Andersen ◽  
Michael R. Hansen ◽  
Per N. Lindholdt

This paper describes the first part of a method that may be used in the design of the most energy efficient hydraulic open-circuit systems, when also considering the operational aspects of the system given in the design specifications. The method builds on a numerically based multi-level optimisation approach, and is in the current paper exemplified through the design of the hydraulic power supply for a forklift truck. The paper first describes the prerequisites for the method and then explains the different steps in the approach to design the hydraulic system. Finally the results of the optimisation example for the forklift truck are presented along with a discussion of the method.


Sign in / Sign up

Export Citation Format

Share Document