scholarly journals Preparation of Activated Carbon from Tea Waste by NaOH Activation as A Supercapacitor Material

2020 ◽  
Vol 9 (2) ◽  
pp. 42-47 ◽  
Author(s):  
Eldya Mossfika ◽  
Syukri Syukri ◽  
Hermansyah Aziz

Karbon aktif dari ampas teh telah disintesis dan telah diuji sebagai elektroda superkapasitor. Pembuatan karbon aktif berdasarkan variasi rasio massa karbon dan aktivator NaOH yaitu 1:4, 1;5 % b/b yang diberi kode AC-4 dan AC-5. Sintesis elektroda karbon aktif di awali dengan proses pra-karbonisasi dan dilanjutkan dengan proses aktivasi kimia. Sampel di karbonisasi pada suhu 800 oC dengan laju kenaikan 50C/menit dalam kondisi gas inert (N2). Karbon aktif ampas teh dikarakterisasi dengan SAA (Surface Area Assessment). Sifat elektrokimia dan kinerja elektroda karbon aktif yang disintesis diukur menggunakan metode voltametri siklik dalam larutan elektrolit H2SO4 1M. Elektroda karbon aktif menunjukkan kapasitansi spesifik tertinggi pada sampel AC-4 yaitu 67 F/g dengan scan rate 1 mV/s dan luas permukaan spesifik 473 m2/g. Mengingat sifat elekrokimia yang menarik tersebut, dan banyaknya ampas teh yang mudah ditemukan disekitar kita maka elektroda karbon aktif ini berpotensi untuk bahan pembuatan superkapasitor elektrokimia skala besar di masa depan.Activated carbon from tea waste has been synthesized and has been tested as a supercapacitor electrode. Making activated carbon based on variations in the ratio of carbon mass and activator NaOH that is 1: 4, 1; 5%wt coded AC-4 and AC-5. Synthesis of activated carbon electrodes begins with the pre-carbonization process and is followed by a chemical activation process. Samples are carbonized at 800 oC with a rate of increase of 50C / min under inert gas (N2) conditions. Activated carbon of tea waste is characterized by SAA (Surface Area Assessment). The electrochemical properties and performance of the activated carbon electrode were measured using the cyclic voltammetry method in a H2SO41 M electrolyte solution. The activated carbon electrode showed the highspecific capacitance in the AC-4 sample of 67 F / g with a scan rate of 1 mV / s and surface area Specifically 473 m2 / g. Considering these interesting electrochemical properties, and the abundance of tea dregs that are easily found around us, this activated carbon electrode has the potential to be a material for making large-scale electrochemical supercapacitors in the future.Keywords:Limbah ampas teh, Aktivator, Kapasitansi spesifik, NaOH, Supekapasitor

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2047 ◽  
Author(s):  
Katarzyna Januszewicz ◽  
Paweł Kazimierski ◽  
Maciej Klein ◽  
Dariusz Kardaś ◽  
Justyna Łuczak

Pyrolysis of straw pellets and wood strips was performed in a fixed bed reactor. The chars, solid products of thermal degradation, were used as potential materials for activated carbon production. Chemical and physical activation processes were used to compare properties of the products. The chemical activation agent KOH was chosen and the physical activation was conducted with steam and carbon dioxide as oxidising gases. The effect of the activation process on the surface area, pore volume, structure and composition of the biochar was examined. The samples with the highest surface area (1349.6 and 1194.4 m2/g for straw and wood activated carbons, respectively) were obtained when the chemical activation with KOH solution was applied. The sample with the highest surface area was used as an adsorbent for model wastewater contamination removal.


2010 ◽  
Vol 62 (11) ◽  
pp. 2637-2646 ◽  
Author(s):  
A. B. Namazi ◽  
C. Q. Jia ◽  
D. G. Allen

The goal of this work is to establish the technical feasibility of producing activated carbon from pulp mill sludges. KOH chemical activation of four lignocellulosic biomass materials, two sludges from pulp mills, one sludge for a linerboard mill, and cow manure, were investigated experimentally, with a focus on the effects of KOH/biomass ratio (1/1, 1.5/1 and 2/1), activation temperature (400–600°C) and activation time (1 to 2 h) on the development of porosity. The activation products were characterized for their physical and chemical properties using a surface area analyzer, scanning electron microscopy and Fourier transform infrared spectroscopy. Experiments were carried out to establish the effectiveness of the lignocellulosic biomass-derived activated carbon in removing methylene blue (MB), a surrogate of large organic molecules. The results show that the activated carbon are highly porous with specific surface area greater than 500 m2/g. The yield of activated carbon was greater than the percent of fixed carbon in the dry sludge, suggesting that the activation process was able to capture a substantial amount of carbon from the organic matter in the sludge. While 400°C was too low, 600°C was high enough to sustain a substantial rate of activation for linerboard sludge. The KOH/biomass ratio, activation temperature and time all play important roles in pore development and yield control, allowing optimization of the activation process. MB adsorption followed a Langmuir isotherm for all four activated carbon, although the adsorption capacity of NK-primary sludge-derived activated carbon was considerably lower than the rest, consistent with its lower specific surface area.


2020 ◽  
Vol 15 (2) ◽  
pp. 79-89
Author(s):  
Sriatun Sriatun ◽  
Shabrina Herawati ◽  
Icha Aisyah

The starting material for activated carbon was biomass from teak woodcutting, which consists of 47.5% cellulose, 14.4% hemicellulose, and 29.9% lignin. The surface area and iodine number of activated carbons are the factors determining the adsorption ability. This study aims to determine the effect of the activator type on activated carbon characters and test the absorption ability for waste cooking oil. The synthesis stages include carbonization, chemical activation, and then physics activation. The activation process consists of two steps. Firstly, the chemical activation via adding H2SO4, and H3PO4 at room temperature for 24 hours, the second, physical activation by heating at various temperatures of 300, 400, and 500 °C for two hours. The characterizations of activated carbon include water content, ash content, iodine number, functional groups, and surface area. Furthermore, the activated carbon was used as an adsorbent for waste cooking oil for 60 minutes at 100 °C with a stirring of 500 rpm. The results were analyzed using UV-Vis spectrophotometry at a maximum wavelength of 403 nm. The iodine numbers of activated carbon ranged 481.1-1211.4 mg/g and 494.8-1204 mg/g for H3PO4 and H2SO4, respectively.Activated carbon with H3PO4 of 15% and an activation temperature of 400 °C has the highest surface area of 445.30 m2/g.  The H2SO4 dan H3PO4 activators can be used to improve the quality of activated carbon in absorbing dyes in waste cooking oil, where the optimum concentration is 10-15% (v/v). The H3PO4 activator tends to produce a higher bleaching percentage than H2SO4. 


2012 ◽  
Vol 463-464 ◽  
pp. 410-414 ◽  
Author(s):  
Jing Li ◽  
Xiao Dong Zhao

A low-cost organic compound mainly comprising of polyarylate was selected as precursor and a chemical activation method was used to prepare an activated carbon material of large surface area, with which the activated carbon electrodes of high specific capacitance were fabricated for supercapacitor. Impact of activating temperature on the specific capacitance of activated carbon electrode was studied, the relationship between the pore structure, surface area and specific capacitance of activated carbon electrode were discussed. The specific capacitance and ESR (equivalent series resistance ) of the electrode fabricated with the activated carbon prepared at 700°C is 211F.g-1 and 0.2Ω/cm2 in hydrous electrolyte and the 122F/g and 1Ω/cm2 in orgnic electrolyte respectively. Because of the different ion diameter in orgnic and hydrous electrolyte, activated electrode show different electrochemical behavior in cyclic voltammetry examinations.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4658 ◽  
Author(s):  
Katarzyna Januszewicz ◽  
Anita Cymann-Sachajdak ◽  
Paweł Kazimierski ◽  
Marek Klein ◽  
Justyna Łuczak ◽  
...  

In this work, we present the preparation and characterization of biomass-derived activated carbon (AC) in view of its application as electrode material for electrochemical capacitors. Porous carbons are prepared by pyrolysis of chestnut seeds and subsequent activation of the obtained biochar. We investigate here two activation methods, namely, physical by CO2 and chemical using KOH. Morphology, structure and specific surface area (SSA) of synthesized activated carbons are investigated by Brunauer-Emmett-Teller (BET) technique and scanning electron microscopy (SEM). Electrochemical studies show a clear dependence between the activation method (influencing porosity and SSA of AC) and electric capacitance values as well as rate capability of investigated electrodes. It is shown that well-developed porosity and high surface area, achieved by the chemical activation process, result in outstanding electrochemical performance of the chestnut-derived porous carbons.


2006 ◽  
Vol 510-511 ◽  
pp. 750-753 ◽  
Author(s):  
Sook Young Moon ◽  
Myung Soo Kim ◽  
Hyun Sik Hahm ◽  
Yun Soo Lim

Activated carbon fibers were prepared from stabilized PAN-based fibers by chemical activation using hydroxides at different concentrations. The experimental data showed variations in specific surface area, microstructure, pore size distribution, and amounts of iodine adsorbed by the activated carbon fibers. Specific surface area of about 2244m2/g and iodine adsorption of 1202mg/g were obtained in the KOH 1.5M. However, the use of NaOH in the activation process rather than KOH and using the same time/ temperature profiles resulted in a carbon with a much lower surface area. KOH is a more developed pore structure than NaOH, which means that KOH is a better activation agent in producing ACF than NaOH.


2015 ◽  
Vol 735 ◽  
pp. 36-40 ◽  
Author(s):  
Noor Shawal Nasri ◽  
Hatijah Basri ◽  
Abdurrahman Garba ◽  
Usman Dadum Hamza ◽  
Jibril Mohammed ◽  
...  

The abundant fraction of agricultural waste materials in the environment that poses disposal challenge could be converted into useful value added products such as activated carbon. Palm oil shell based carbon was prepared by two step process using K2CO3 as the chemical activant. The Langmuir surface area, BET surface area and pore volume were 817 m2/g, 707m2/g and 0.31cm3/g. From the FTIR analysis, carbonyls, alkenes and hydroxyls were identified. The SEM image shows gradual formation of pores due to elimination of volatiles and contaminants. Carbonization at 800°C for 2 hours and activation at same temperature for 1h has the highest yield of 23.27%. The proximate and ultimate analysis shows high percentage of carbon and low percentage of ash which is an indication of a good material for production of porous carbon. The activated carbon produced showed basic properties suitable for removal of organic contaminants in aqueous solutions. However, the aim of this study is to produce a green and porous carbon with controlled pores and surface properties for organic contaminants removal from water and wastewater.


2016 ◽  
Vol 835 ◽  
pp. 289-298 ◽  
Author(s):  
M.I.M. Nayai ◽  
Khudzir Ismail ◽  
Mohd Azlan Mohd Ishak ◽  
N. Zaharudin ◽  
Wan Izhan Nawawi

Coconut shell-based activated carbon (CSAc) was prepared by chemical activation method using microwave-induced KOH technique. The activation process was successfully carried out with varying microwave power ranging from 100 to 1000 W and impregnation ratio of 1.0 to 3.0. The surface area, pore sizes, surface morphology and specific capacitance of the produced activated carbon were analyzed by using an automatic quantachrome instrument (Autosorb1C) volumetric sorption analyzer, scanning electron microscope (SEM) and automatic battery cycler. The optimum activation power and impregnation ratio were found at 600 W and 1.5, respectively. The resulted product, C3 has maximum surface area and specific capacitance value of 1768.8 m2 g-1 and 156.33 F g-1 respectively, with carbon yield of 58 %.


2021 ◽  
Vol 21 (2) ◽  
pp. 211
Author(s):  
Norakmalah Mohd Zawawi ◽  
Fazlena Hamzah ◽  
Harumi Veny ◽  
Miradatul Najwa Mohd Rodhi ◽  
Mahanim Sarif

This paper presents the utilization of bamboo residue from the chopstick industry as modified carbon (AC) for supercapacitor application.  Bamboo activated carbon (BAC) was activated using Potassium hydroxide (KOH) and assisted with microwave ultrasonic (Mw-U) irradiation to enhance the properties of bamboo activated carbon (BAC). Different microwave (Mw) power intensities of 100 W, 300 W, and 500 W at 30 minutes of retention time have been applied on activation and the carbonization process was conducted at temperature 800°C. The BAC was analyzed for the morphology using a scanning electron microscope and proximate and ultimate analysis. Then BAC with the higher surface area was subjected to the electrochemical analysis to determine the electrochemical properties. The study indicated Mw-U irradiation improved the morphology of the BAC, eliminated the impurity of the sample, and gave higher carbon content of BAC. The findings show that lower Mw-U irradiation power provided a higher surface area of BAC. The surface area of 646.87 m2/g and total pore volume of 2.8x10-1 cm3/g was obtained with a power intensity of Mw-U activation at 100 W. While, electrochemical properties, the specific capacitance (Cs) of BAC was 77 Fg-1 at 25 mVs-1 in 1 mol/L KOH of electrolyte for cyclic voltammetry (CV) which indicates the ability of the prepared BAC to be used as an electrode in supercapacitor application. This study determined that Mw-U irradiation can improve the properties of the bamboo during chemical activation and formed BAC that consists of supercapacitor properties.


2010 ◽  
Vol 658 ◽  
pp. 113-116 ◽  
Author(s):  
Chiravoot Pechyen ◽  
Duangdao Aht-Ong ◽  
Viboon Sricharoenchaikul ◽  
Duangduen Atong

Pyrolysis is one form of energy recovery process which has the potential to generate oil, gas and char products. The char becomes an attractive by-product, with applications including production of activated carbons that is useful as a sorbent for wastewater treatment and air pollution control. In this work, activated carbon was prepared from Coffee (Coffea Arabica L.) bean waste collected from local coffee houses. Char from pyrolysis of coffee bean waste at 900 °C contained high fixed carbon and low volatile content that was favorable for subsequent activation process. The char was activated via chemical treatment with sodium hydroxide (NaOH) at five different NaOH : char ratios (1:1, 2:1, 3:1, 4:1 and 5:1) and heat treated at 400°C for 15 minutes using a fixed bed reactor under nitrogen atmosphere with a flow rate of 100 mL/min. Result shows that NaOH works effectively as dehydration reagent around 400°C. Under the experimental conditions investigated, impregnation ratio of 1.0 was found to be suitable for producing high-surface area activated carbon. The surface area and total pore volume of activated carbons, which were determined by application of the Brunauer–Emmett–Teller (BET) and t-plot methods, were achieved as high as 802 m2/g and 0.80 cm3/g, respectively. The chemically activated carbons were found to be mainly type I carbons and had high adsorption property (Methylene blue adsorption = 284 mg/g and Iodine number = 1070 mg/g).


Sign in / Sign up

Export Citation Format

Share Document