scholarly journals Offline Signature Identification Using Deep Learning and Euclidean Distance

2021 ◽  
Vol 12 (2) ◽  
pp. 102
Author(s):  
Made Prastha Nugraha ◽  
Adi Nurhadiyatna ◽  
Dewa Made Sri Arsa

Hand signature is one of human characteristic that human have since birth, which can be used as identity recognition. A high accuracy signature recognition is needed to identify the right owner of signature. This study present signature identification using a combination method between Deep Learning and Euclidean Distance.  3 different signature datasets are used in this study which consist of SigComp2009, SigComp2011, and private dataset. Signature images preprocessed using binary image conversion, Region of Interest, and thinning. Several testing scenarios is applied to measure proposed method robustness, such as usage of various Pretrained Deep Learning, dataset augmentation, and dataset split ratio modifier. The best accuracy achieved is 99.44% with high precision rate.

2001 ◽  
Vol 40 (04) ◽  
pp. 107-110 ◽  
Author(s):  
B. Roßmüller ◽  
S. Alalp ◽  
S. Fischer ◽  
S. Dresel ◽  
K. Hahn ◽  
...  

SummaryFor assessment of differential renal function (PF) by means of static renal scintigraphy with Tc-99m-dimer-captosuccinic acid (DMSA) the calculation of the geometric mean of counts from the anterior and posterior view is recommended. Aim of this retrospective study was to find out, if the anterior view is necessary to receive an accurate differential renal function by calculating the geometric mean compared to calculating PF using the counts of the posterior view only. Methods: 164 DMSA-scans of 151 children (86 f, 65 m) aged 16 d to 16 a (4.7 ± 3.9 a) were reviewed. The scans were performed using a dual head gamma camera (Picker Prism 2000 XP, low energy ultra high resolution collimator, matrix 256 x 256,300 kcts/view, Zoom: 1.6-2.0). Background corrected values from both kidneys anterior and posterior were obtained. Using region of interest technique PF was calculated using the counts of the dorsal view and compared with the calculated geometric mean [SQR(Ctsdors x Ctsventr]. Results: The differential function of the right kidney was significantly less when compared to the calculation of the geometric mean (p<0.01). The mean difference between the PFgeom and the PFdors was 1.5 ± 1.4%. A difference > 5% (5.0-9.5%) was obtained in only 6/164 scans (3.7%). Three of 6 patients presented with an underestimated PFdors due to dystopic kidneys on the left side in 2 patients and on the right side in one patient. The other 3 patients with a difference >5% did not show any renal abnormality. Conclusion: The calculation of the PF from the posterior view only will give an underestimated value of the right kidney compared to the calculation of the geometric mean. This effect is not relevant for the calculation of the differntial renal function in orthotopic kidneys, so that in these cases the anterior view is not necesssary. However, geometric mean calculation to obtain reliable values for differential renal function should be applied in cases with an obvious anatomical abnormality.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


Author(s):  
Zezheng Yan ◽  
Hanping Zhao ◽  
Xiaowen Mei

AbstractDempster–Shafer evidence theory is widely applied in various fields related to information fusion. However, the results are counterintuitive when highly conflicting evidence is fused with Dempster’s rule of combination. Many improved combination methods have been developed to address conflicting evidence. Nevertheless, all of these approaches have inherent flaws. To solve the existing counterintuitive problem more effectively and less conservatively, an improved combination method for conflicting evidence based on the redistribution of the basic probability assignment is proposed. First, the conflict intensity and the unreliability of the evidence are calculated based on the consistency degree, conflict degree and similarity coefficient among the evidence. Second, the redistribution equation of the basic probability assignment is constructed based on the unreliability and conflict intensity, which realizes the redistribution of the basic probability assignment. Third, to avoid excessive redistribution of the basic probability assignment, the precision degree of the evidence obtained by information entropy is used as the correction factor to modify the basic probability assignment for the second time. Finally, Dempster’s rule of combination is used to fuse the modified basic probability assignment. Several different types of examples and actual data sets are given to illustrate the effectiveness and potential of the proposed method. Furthermore, the comparative analysis reveals the proposed method to be better at obtaining the right results than other related methods.


2021 ◽  
Vol 7 (5) ◽  
pp. 89
Author(s):  
George K. Sidiropoulos ◽  
Polixeni Kiratsa ◽  
Petros Chatzipetrou ◽  
George A. Papakostas

This paper aims to provide a brief review of the feature extraction methods applied for finger vein recognition. The presented study is designed in a systematic way in order to bring light to the scientific interest for biometric systems based on finger vein biometric features. The analysis spans over a period of 13 years (from 2008 to 2020). The examined feature extraction algorithms are clustered into five categories and are presented in a qualitative manner by focusing mainly on the techniques applied to represent the features of the finger veins that uniquely prove a human’s identity. In addition, the case of non-handcrafted features learned in a deep learning framework is also examined. The conducted literature analysis revealed the increased interest in finger vein biometric systems as well as the high diversity of different feature extraction methods proposed over the past several years. However, last year this interest shifted to the application of Convolutional Neural Networks following the general trend of applying deep learning models in a range of disciplines. Finally, yet importantly, this work highlights the limitations of the existing feature extraction methods and describes the research actions needed to face the identified challenges.


Author(s):  
Saeed Vasebi ◽  
Yeganeh M. Hayeri ◽  
Peter J. Jin

Relatively recent increased computational power and extensive traffic data availability have provided a unique opportunity to re-investigate drivers’ car-following (CF) behavior. Classic CF models assume drivers’ behavior is only influenced by their preceding vehicle. Recent studies have indicated that considering surrounding vehicles’ information (e.g., multiple preceding vehicles) could affect CF models’ performance. An in-depth investigation of surrounding vehicles’ contribution to CF modeling performance has not been reported in the literature. This study uses a deep-learning model with long short-term memory (LSTM) to investigate to what extent considering surrounding vehicles could improve CF models’ performance. This investigation helps to select the right inputs for traffic flow modeling. Five CF models are compared in this study (i.e., classic, multi-anticipative, adjacent-lanes, following-vehicle, and all-surrounding-vehicles CF models). Performance of the CF models is compared in relation to accuracy, stability, and smoothness of traffic flow. The CF models are trained, validated, and tested by a large publicly available dataset. The average mean square errors (MSEs) for the classic, multi-anticipative, adjacent-lanes, following-vehicle, and all-surrounding-vehicles CF models are 1.58 × 10−3, 1.54 × 10−3, 1.56 × 10−3, 1.61 × 10−3, and 1.73 × 10−3, respectively. However, the results show insignificant performance differences between the classic CF model and multi-anticipative model or adjacent-lanes model in relation to accuracy, stability, or smoothness. The following-vehicle CF model shows similar performance to the multi-anticipative model. The all-surrounding-vehicles CF model has underperformed all the other models.


2021 ◽  
Vol 11 (4) ◽  
pp. 1965
Author(s):  
Raul-Ronald Galea ◽  
Laura Diosan ◽  
Anca Andreica ◽  
Loredana Popa ◽  
Simona Manole ◽  
...  

Despite the promising results obtained by deep learning methods in the field of medical image segmentation, lack of sufficient data always hinders performance to a certain degree. In this work, we explore the feasibility of applying deep learning methods on a pilot dataset. We present a simple and practical approach to perform segmentation in a 2D, slice-by-slice manner, based on region of interest (ROI) localization, applying an optimized training regime to improve segmentation performance from regions of interest. We start from two popular segmentation networks, the preferred model for medical segmentation, U-Net, and a general-purpose model, DeepLabV3+. Furthermore, we show that ensembling of these two fundamentally different architectures brings constant benefits by testing our approach on two different datasets, the publicly available ACDC challenge, and the imATFIB dataset from our in-house conducted clinical study. Results on the imATFIB dataset show that the proposed approach performs well with the provided training volumes, achieving an average Dice Similarity Coefficient of the whole heart of 89.89% on the validation set. Moreover, our algorithm achieved a mean Dice value of 91.87% on the ACDC validation, being comparable to the second best-performing approach on the challenge. Our approach provides an opportunity to serve as a building block of a computer-aided diagnostic system in a clinical setting.


2011 ◽  
Vol 42 (1) ◽  
pp. 29-40 ◽  
Author(s):  
R. Kerestes ◽  
C. D. Ladouceur ◽  
S. Meda ◽  
P. J. Nathan ◽  
H. P. Blumberg ◽  
...  

BackgroundPatients with major depressive disorder (MDD) show deficits in processing of facial emotions that persist beyond recovery and cessation of treatment. Abnormalities in neural areas supporting attentional control and emotion processing in remitted depressed (rMDD) patients suggests that there may be enduring, trait-like abnormalities in key neural circuits at the interface of cognition and emotion, but this issue has not been studied systematically.MethodNineteen euthymic, medication-free rMDD patients (mean age 33.6 years; mean duration of illness 34 months) and 20 age- and gender-matched healthy controls (HC; mean age 35.8 years) performed the Emotional Face N-Back (EFNBACK) task, a working memory task with emotional distracter stimuli. We used blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to measure neural activity in the dorsolateral (DLPFC) and ventrolateral prefrontal cortex (VLPFC), orbitofrontal cortex (OFC), ventral striatum and amygdala, using a region of interest (ROI) approach in SPM2.ResultsrMDD patients exhibited significantly greater activity relative to HC in the left DLPFC [Brodmann area (BA) 9/46] in response to negative emotional distracters during high working memory load. By contrast, rMDD patients exhibited significantly lower activity in the right DLPFC and left VLPFC compared to HC in response to positive emotional distracters during high working memory load. These effects occurred during accurate task performance.ConclusionsRemitted depressed patients may continue to exhibit attentional biases toward negative emotional information, reflected by greater recruitment of prefrontal regions implicated in attentional control in the context of negative emotional information.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3910 ◽  
Author(s):  
Taeho Hur ◽  
Jaehun Bang ◽  
Thien Huynh-The ◽  
Jongwon Lee ◽  
Jee-In Kim ◽  
...  

The most significant barrier to success in human activity recognition is extracting and selecting the right features. In traditional methods, the features are chosen by humans, which requires the user to have expert knowledge or to do a large amount of empirical study. Newly developed deep learning technology can automatically extract and select features. Among the various deep learning methods, convolutional neural networks (CNNs) have the advantages of local dependency and scale invariance and are suitable for temporal data such as accelerometer (ACC) signals. In this paper, we propose an efficient human activity recognition method, namely Iss2Image (Inertial sensor signal to Image), a novel encoding technique for transforming an inertial sensor signal into an image with minimum distortion and a CNN model for image-based activity classification. Iss2Image converts real number values from the X, Y, and Z axes into three color channels to precisely infer correlations among successive sensor signal values in three different dimensions. We experimentally evaluated our method using several well-known datasets and our own dataset collected from a smartphone and smartwatch. The proposed method shows higher accuracy than other state-of-the-art approaches on the tested datasets.


Author(s):  
Meng-Chieh Lee ◽  
Yu Huang ◽  
Josh Jia-Ching Ying ◽  
Chien Chen ◽  
Vincent S. Tseng

Sign in / Sign up

Export Citation Format

Share Document