scholarly journals Optimization of the Vibration Isolation Performance of an Impact-testing Machine Using Multi-walled Carbon Nanotubes Reinforced Elastomeric Machine Mounts

2019 ◽  
Vol 41 (3) ◽  
pp. 433-442 ◽  
Author(s):  
K. Tsongas ◽  
G. Mansour
2020 ◽  
Vol 318 ◽  
pp. 01050
Author(s):  
Konstantinos Tsongas ◽  
Gabriel Mansour

The objective of this paper is to evaluate the vibration isolation performance of an elevator motor mounted on elastomeric nanocomposite mounts. A series of conventional acrylonitrile-butadiene rubber (NBR) mounts have been reinforced with 20wt% concentration of multi-walled carbon nanotubes (MWCNTs). The vibration isolation capacity of the machine mounts was calculated through the transmissibility of an elevator motor test system. A Finite Element Model (FEM) was introduced and a harmonic analysis based on the ANSYS code has been utilized to investigate the modal behavior of the nanocomposite machine mount/elevator motor system and extract a representative model of the vibrational behavior. The cyclic compression results have revealed that the stiffness and damping capacity of the conventional elastomers can be modified by adjusting the proportion of MWCNTs. Elastomers’ vibration isolation performance of the motor was ameliorated with the inclusion of MWCNTs, signifying that the enhancement of the elastomers with MWCNTs was rather effective. The vibration level of the elevator motor was decreased to 90% by incorporating the optimal concentration of MWCNTs in NBR mounts.


2015 ◽  
Vol 15 (10) ◽  
pp. 8086-8092 ◽  
Author(s):  
Jeong Hee Yang ◽  
Jae Yun Lee ◽  
In-Joo Chin

Polylactide (PLA) nanocomposites with multi-walled carbon nanotubes (MWNTs) grafted with poly(L-lactide) or poly(D-lactide) were prepared by solution casting, and their thermal and mechanical properties were evaluated. MWNTs containing hydroxyl groups were treated by ring-opening polymerization of either L-lactide or D-lactide. Fourier transform infrared spectroscopy confirmed that the MWNT surfaces had been modified by the PLLA or PDLA chains. The thermal properties were measured by differential scanning calorimetry and thermogravimetric analysis. The mechanical properties were examined using a universal testing machine. The morphology of the fractured surfaces of the PLA nanocomposites was observed by scanning electron microscopy and transmission electron microscopy. PDLA-g-MWNTs were dispersed more uniformly compared to PLLA-g-MWNTs in the PLA matrix. The incorporation of PDLA-g-MWNTs greatly improved the tensile strength of the nanocomposites regardless of the contents. Thermal analysis revealed different characteristics at specific composites depending on the type of modification.


2016 ◽  
Vol 36 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Hassan Javed ◽  
Mohammad Islam ◽  
Nasir Mahmood ◽  
Amine Achour ◽  
Asad Hameed ◽  
...  

Abstract Mechanical properties of multi-walled carbon nanotubes (CNT) reinforced epoxy nanocomposites, with and without any structural defect, were investigated using different weight percent values of pristine and covalently functionalized CNT. First, nickel ferrite (NiFe2O4) catalyst nanoparticles were prepared using the co-precipitate method followed by CNT growth via chemical vapor deposition, using acetylene as carbon feedstock. Through a combination of magnetic stirring and ultrasound vibration treatments in acetone, pristine, COOH-, or NH2-functionalized CNTs at 0.15, 0.60, 1.10 and 1.50 wt% were added to the Epon 828 epoxy. During each stage, extensive materials characterization was carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA)/differential thermal analysis (DTA) techniques. Tensile testing of the specimens revealed an increase in the elastic modulus and tensile strength values with maximum increase registered in the case of nanocomposites made from 1.1 wt% CNT-NH2 (+73%) or CNT-COOH (67%) addition. The energy absorbed during impact testing also increased by 86% upon addition of 1.50 wt% CNT-NH2. The presence of a small notch in the nanocomposite specimens yielded superior mechanical properties to those of the neat epoxy. Such enhancement in the mechanical properties can be attributed to better CNT dispersion in the nanocomposites and good interfacial bonding, as confirmed from microstructural examination of the fractured surfaces.


Author(s):  
Amjad Hussain ◽  
Muhammad Khan ◽  
Ammara Nawaz ◽  
Li Tiehu ◽  
Amir Zada ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) and graphene oxide (GO) reinforced carbon foam (CF) composite were prepared by direct pyrolysis of MWCNTs, GO and mesophase coal tar pitch. The effect of additive amount of the mixture of MWCNTs and GO on the microstruture and properties of carbon foam was analzyed by transmission electron miscroscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Four-probe resistance meter, universal testing machine, and laser thermal conductivity tester respectively. The result shows that MWCNTs and GO had significant impact on the microstructure of carbon foam. Futhermore, the electrical, mechanical and thermal properties of carbon foam composites were significantly enhanced by increasing the additive amount. Maximum compressive strenght of 19.2 MPa and Young’s modulus of 56.8 MPa of CF composite were observed. Similarly, Highest thermal conductivity of 30.91 W/m.K and electrical conductivity of 27.2 ×103 S/m were observed at 2 wt. % of MWCNTs-GO additive loading.


Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


Sign in / Sign up

Export Citation Format

Share Document