scholarly journals UNIVERSITY AND COMMUNITY COLLEGE STUDENTS CAN SHARE A LEARNING EXPERIENCE

Author(s):  
Barrie Jackson ◽  
Dale Dilamarter ◽  
Peter Spasov

This paper describes a pilot collaboration between Queen’s University and Sir Sandford Fleming College of Applied Arts and Technology in Peterborough Ontario. Since 1994 Queen’s has offered projects where students learn by solving problems for fee paying industrial clients. Known as Technology Engineering and Management (TEAM) student participants form multidisciplinary teams to consult for business clients. In addition to engineering students, commerce and arts students have often participated in the teams. In the Applied Projects program at Fleming College, third year engineering technology student teams solve problems for enterprise sponsors. A pilot group of engineering technology students from Fleming College worked with students in two Queen’s University TEAM projects. In industrial practice, engineers and engineering technologists often collaborate on solving problems. This collaboration rarely occurs in an educational setting. In the 2002-2003 academic year the pilot exercise simulated the professional working relationship between engineers and technologists. This paper gives a description of the experience and the motivation to undertake this unique collaboration. The most important aspect of the presentation is a critical assessment of the University/College collaboration -- what worked, what problems arose, and what improvements are suggested.

Author(s):  
Donald C. Richter ◽  
Hani S. Saad ◽  
Martin W. Weiser

Engineering and Engineering Technology students need to learn to innovate and embrace new technologies as they develop and progress through their careers. The undergraduate degree program needs to provide this first opportunity at innovation allowing the student to gain experience and confidence at solving technological problems. This paper describes the learning experiences in innovation using an undergraduate course in robotics and automation. The course is composed of Mechanical Engineering and Mechanical Engineering Technology students. The paper relates the successful attempt the students had in developing and using innovation through the creation opened-ended industrial robot system projects. The undergraduate student project teams in the course are self-directed and have to use innovation to develop a robotic project of their own design. This breaks the cycle of students just doing the same preset experiments that others have done before them. Although doing preset experiments can reinforce theory given in classroom, it does little to develop skills in innovation, which will be the key to success in the global economy. The course provides an excellent framework for the student teams to demonstrate their ability to innovate using new technology to solve a complex problem while having the mentorship from instructors as they take their first steps in actually doing innovation. The confidence and process used to solve these problems will provide a basis upon which they can formulate new strategies to incorporate new technologies throughout their career.


Author(s):  
Cheng-Xian Lin ◽  
Nipesh Pradhananga ◽  
Shahin Vassigh

Abstract Sustainable building design and construction involves complex systems that require multidisciplinary teams from engineering, construction, and architecture, to design and analyze the systems at every stage of the process during the building’s life cycle. However, students who are the future work force are often trained in different disciplines across different colleges. When these students are grouped together to work on the building design and analysis, learning in a multidisciplinary environment could be both beneficial and challenging due to the difference in their background. In this paper, we report our experience and analysis of data examining the learning effectiveness of the undergraduate students from three cross-college departments in architecture, construction, and engineering. Using pre- and post-semester tests on selected building science problems, we have investigated how the student’s understanding of building science had changed through team projects. Particularly, for mechanical engineering students in the design of thermal/fluid systems classes, we analyzed whether a cross-college multidisciplinary team could do better as compared to a disciplinary-specific team within the same class. We also examined the potential effects of emerging technology, augmented reality, on student learning in the same team environment. It was interesting to find that students’ learning in discipline-specific teams can be improved as in the multidisciplinary teams, due to the challenges in the complexity of the projects.


Author(s):  
Monir K. Parikh ◽  
Robert W. Hitchcock

The University of Utah offers a two semester capstone biomedical engineering design course (bioDesign) where products are developed and prototyped using the guidance of FDA Design Control mandates. During the two semesters, students are required to develop a project plan, marketing requirements, specifications, test plan, results and working prototype. Additionally, design reviews are regularly held in order to provide student teams with constructive feedback from clinicians, coaches, and course instructors. To foster a rich environment for innovation and to better instruct students in problem based learning, we partner student teams with design ideas that have been conceptualized by clinical advisors. This collaboration creates high value relationships maximizing the students’ learning experience while exposing them to best practices. This course offers unique challenges to the students; they must balance the creativity and innovation of design work with the documentation and regulations mandated by the FDA and other regulatory agencies. Since the inception of this course, we have identified various problems with student learning. Over the past 25 years, educators have begun to understand the importance of hands-on, interactive learning experiences in the undergraduate engineering curriculum [1,2]. Therefore, by overcoming the teaching and learning issues associated with this program, we hope to develop a course that empowers student teams to become effective, innovative engineers.


Author(s):  
Michael McGuire ◽  
Kin Fun Li ◽  
Fayez Gebali

Design is associated with the invention,planning and building a product. Engineering design, inparticular, takes considerable effort, skills, andintegration of knowledge; hence, it is difficult to teachfreshmen this subject since they have not possessed ordeveloped the proper skill set yet. The Faculty ofEngineering at the University of Victoria has beenteaching engineering design (in two successive courses)to all first-year engineering students. In addition toattending plenary lectures, student teams are working oncompetitive projects in the laboratory, while participatingin highly integrated communication modules. In thiswork, we discuss the curricula of these design courses,model of delivery and share our experience for the pastthree years.


Author(s):  
Peter Dare ◽  
Brian Cooke

A Task Force was created by the Faculty of Engineering at the University of New Brunswick in September 2004 charged with creating a new course for all first year engineering students to be delivered for the first time in September 2005. The course, to be taken by approximately 270 students, was to integrate material from other first year courses, introduce the students to working in teams, contain a substantial design element through a design project, and introduce communication skills. Nine professors from throughout engineering “volunteered” to help develop and deliver the course. In this paper we own up to what we did wrong during the first two years of delivery of this course, and (naturally!) counter this by celebrating our successes. Students are assessed based on a combination of individual and team submissions, with some submissions being oral and others written. This paper will outline the complex assessment scheme we initially used, and how we later simplified it. Rubrics were used to evaluate many of the course assignments. For most of the instructors, this was the first time they had used rubrics and so it was a learning experience to both develop and apply them. We show how we adapted their use in the second year of delivery after the experiences of the first year. We were pleased with the way that the assessments were mostly built around the design project – this helped the students grasp why clear communication is vital and enabled them to obtain continual feedback on the project. We were also delighted that an element of social responsibility was introduced into the course by making the project an international “Engineers Without Borders” project based in Africa. We believe this added an additional dimension to the course and especially the project. The professor-delivered skits were especially popular! Delivered by two wannabe actors, they introduced the students in a humorous manner to the different types of engineering that are taught at UNB. Engineering students at UNB have to commit to their specific engineering field from their first day at UNB, so these skits were included to ensure the students were exposed to all the UNB engineering disciplines. We conclude the paper with our plans for delivery of the course in September 2007 and beyond.


Author(s):  
Geoffrey J. Peter

Modern technology and manufacturing methods often require engineers who understand the fundamental principles of vibration theory and who are also skilled in vibration applications. Simply processing, remembering and applying the material learned from lectures and laboratory experiments with artificial criteria are inadequate. Hands-on teaching techniques with real-world problems are needed to complete the engineering students’ education. This paper demonstrates how hands-on experiments performed in industry support and increase the students’ understanding of fundamental principles and skill in their applications. Graduates with both knowledge and skill are more competitive in today’s job market. A one-quarter industry-based vibration course was developed and taught with a hands-on segment at the Manufacturing and Mechanical Engineering and Technology (MMET) program at Oregon Institute of Technology (OIT) - Portland Campus. This novel instructional approach provided students with the opportunity to immediately apply material, learned in class and laboratory, in real-world industry situations with real-world problems. This instructional approach is applicable in many engineering fields and the author found the mechanical vibrations class particularly well suited for this instructional design style. The hands-on approach, grounded in the vibration course curriculum, provided a direct link to the fundamentals of vibration in industry. Student comments are included to demonstrate the value perceived by the students. Although this curriculum experiment involved mechanical engineering technology students, it would benefit mechanical engineering students equally well. In addition, the paper provides a brief description of the industries that participated in this project. Industries were selected because they use vibration based manufacturing, perform extreme testing or design their products to avoid failure due to vibrations.


2001 ◽  
Author(s):  
Thomas G. Boronkay ◽  
Janak Dave

Abstract Every student in the Mechanical Engineering Technology Department must complete a Senior Capstone Design Project course sequence as a requirement for the partial fulfillment of the Bachelor of Science in Mechanical Engineering Technology degree. Mechanical Engineering Technology students at the University of Cincinnati must design, build, and test their product for the satisfactory completion of the Senior Design Project course sequence. At many institutions the capstone projects do not include the build and test components. This paper gives a short description of the Senior Design course sequence, the list of pre-requisite design courses, the design process used by the students to complete their projects. It addresses issues, such as, team versus individual projects, industrial versus personal projects, etc. It also describes typical projects, two of which are being used in industry with minor modifications.


2011 ◽  
Vol 40 (2) ◽  
pp. 107-116
Author(s):  
MOLLY L. MCCLELLAND ◽  
DARRELL K. KLEINKE

ABSTRACT Interdisciplinary collaboration in higher education can produce valuable learning experiences beyond that of a single discipline approach. The University of Detroit Mercy College of Engineering and College of Health Professions have effectively collaborated yielding results that benefit not only the student but physically challenged individuals living in the Detroit area. Teams of engineering students and nursing students work together on projects to build assistive devices that improve the lives of people in need. This paper describes the techniques, goals and objectives used in multidisciplinary collaborative education. Students who have completed the course have described an enhanced understanding of how to effectively collaborate with members of other disciplines. Clients who have worked with the multidisciplinary teams have benefited by receiving assistive devices that have significantly improved their activities of daily living.


Sign in / Sign up

Export Citation Format

Share Document