A simulation study of the three-electrode cathodic protection potential distribution with ANSYS

Author(s):  
H. Xu ◽  
X.T. Chen ◽  
X.S. Che
2014 ◽  
Vol 644-650 ◽  
pp. 3734-3738
Author(s):  
Peng Zhang ◽  
Juan Zhao ◽  
Gui Wang

Finite element numerical simulation software was used for numerical simulation analysis of cathodic protection of coastal power plant condenser based on physical scale model. The effects of location, size and number of auxiliary anode on the cathodic protection potential distribution of the condenser were studied, which would predict cathodic protection result of the condenser and provide reasonable design for cathodic protection of the condenser.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6248
Author(s):  
Muhammad Syahmi Abd Rahman ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Muhamad Safwan Ab-Rahman ◽  
Miszaina Osman ◽  
Shamsul Fahmi Mohd Nor ◽  
...  

The crossarm is an important component of transmission towers, providing insulation for transmission lines at different voltage ratings. Recently, composite crossarms were widely used as a composite tower component and were found to be the most favorable choice for replacing old wooden crossarms. Owing to the satisfactory pilot operation and multiple sets of testing, fiberglass-reinforced polymer (FRP) composite crossarms have been used in Malaysia in both 132 and 275 kV transmission lines since the late 1990′s. Since then, some modifications have been proposed to improve the mechanical performance of the crossarm, in order to ensure the reliability of its performance. In this investigation, the effect of a proposed improvement, achieved by installing a brace for the crossarm, was investigated numerically. A simulation study was conducted, with a consideration of the lightning impulse voltage (LIV) and swing angle exhibited by the crossarm. The potential and electric field (E-Field) distribution were analyzed and are presented in this paper. It was found that the potential distribution and E-Field strength for the crossarm and the surrounding air were greatly affected by the installation of the brace.


2020 ◽  
Vol 841 ◽  
pp. 294-299
Author(s):  
Sergio Lorenzi ◽  
Cristian Testa ◽  
Marina Cabrini ◽  
Francesco Carugo ◽  
Luigi Coppola ◽  
...  

The paper is aimed to the study of the corrosion-fatigue behavior of high strength steels for offshore pipelines. Tests have been performed in order to study fatigue crack growth in synthetic seawater under cathodic protection. The tests have been carried out on three different steel grades from 65 to 85 ksi with tempered martensite and ferrite-bainite microstructures. The effect of stress intensity factor, cathodic protection potential and cyclic loading frequency is shown.


2020 ◽  
Vol 67 (4) ◽  
pp. 427-434
Author(s):  
Haijing Sun ◽  
Weihai Xue ◽  
Jiaxin Xu ◽  
Guoliang Chen ◽  
Jie Sun

Purpose The purpose of this work is to provide theoretical guidance and experimental analysis for optimized cathodic protection (CP) design of low alloy steel in deep water environments. Design/methodology/approach In the present study, the CP criteria of 10Ni5CrMoV low alloy steel were investigated in a simulated deep water environment (350 m) regarding the theoretical protection potential and measured protection potential. The influences of hydrostatic pressure (HP) and temperature were also discussed in detail. The theoretical protection potential was analyzed with the Nernst equation, and the measured minimum protection potential was derived by extrapolating the Tafel portion of anodic polarization curves. Findings The results indicate that the minimum protection potential of low alloy steel shifts to a positive value in a deep-ocean environment. This can be attributed to the combined effects of HP and the temperature. Moreover, the temperature has a stronger influence compared with HP. The results suggest that the CP potential criteria used in shallow water are still applicable in the deep ocean, which is further confirmed through the SEM and x-ray diffraction analysis of the corrosion products resulted from the potentiostatic cathodic polarization experiments at −0.85 VCSE. Originality/value In recent decades, successful applications of CP for long-term corrosion protection of the steel components applied at a subsea level have enabled the offshore industry to develop reliable and optimized CP systems for shallow water. However, differences in the seawater environment at greater depths have raised concerns regarding the applicability of the existing CP design for deeper water environments. Hence, this research focuses on the CP criteria of low alloy steel in simulated deep water environment concerning the theoretical protection potential and measured protection potential. The influences of HP and temperature were also discussed.


Sign in / Sign up

Export Citation Format

Share Document