scholarly journals Effects of a Crossarm Brace Application on a 275 kV Fiberglass-Reinforced Polymer Crossarm Subjected to a Lightning Impulse

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6248
Author(s):  
Muhammad Syahmi Abd Rahman ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Muhamad Safwan Ab-Rahman ◽  
Miszaina Osman ◽  
Shamsul Fahmi Mohd Nor ◽  
...  

The crossarm is an important component of transmission towers, providing insulation for transmission lines at different voltage ratings. Recently, composite crossarms were widely used as a composite tower component and were found to be the most favorable choice for replacing old wooden crossarms. Owing to the satisfactory pilot operation and multiple sets of testing, fiberglass-reinforced polymer (FRP) composite crossarms have been used in Malaysia in both 132 and 275 kV transmission lines since the late 1990′s. Since then, some modifications have been proposed to improve the mechanical performance of the crossarm, in order to ensure the reliability of its performance. In this investigation, the effect of a proposed improvement, achieved by installing a brace for the crossarm, was investigated numerically. A simulation study was conducted, with a consideration of the lightning impulse voltage (LIV) and swing angle exhibited by the crossarm. The potential and electric field (E-Field) distribution were analyzed and are presented in this paper. It was found that the potential distribution and E-Field strength for the crossarm and the surrounding air were greatly affected by the installation of the brace.

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Francis Dantas ◽  
Kevin Couling ◽  
Gregory J. Gibbons

Abstract The aim of this study was to identify the effect of material type (matrix and reinforcement) and process parameters, on the mechanical properties of 3D Printed long-fibre reinforced polymer composites manufactured using a commercial 3D Printer (Mark Two). The effect of matrix material (Onyx or polyamide), reinforcement type (Carbon, Kevlar®, and HSHT glass), volume of reinforcement, and reinforcement lay-up orientation on both Ultimate Tensile Strength (UTS) and Flexural Modulus were investigated. For Onyx, carbon fibre reinforcement offered the largest increase in both UTS and Flexural Modulus over unreinforced material (1228 ± 19% and 1114 ± 6% respectively). Kevlar® and HSHT also provided improvements but these were less significant. Similarly, for Nylon, the UTS and Flexural Modulus were increased by 1431 ± 56% and 1924 ± 5% by the addition of carbon fibre reinforcement. Statistical analysis indicated that changing the number of layers of reinforcement had the largest impact on both UTS and Flexural Strength, and all parameters were statistically significant.


Author(s):  
Tomasz Siwowski ◽  
Aleksander Kozlowski ◽  
Leonard Ziemiański ◽  
Mateusz Rajchel ◽  
Damian Kaleta

<p>Technology and materials can help cities get smarter and cope with rapid urbanisation. Life cycle assessment (LCA) is one of the approaches applied in evaluation of material sustainability. Many significant LCA comparisons of innovative and traditional construction materials indicate that fibre- reinforced polymer (FRP) composites compare very favourably with other materials studied. As a proposal for rapid urbanisation, the FRP all-composite road bridge was developed and demonstrated in Poland. The paper describes the bridge system itself and presents the results of research on its development. The output of the R&amp;D project gives a very promising future for the FRP composite bridge application in Poland, especially for cleaner, resilient and more environmentally efficient infrastructure of fast-growing cities.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaxiang Li ◽  
Biao Wang ◽  
Jian Sun ◽  
Shuhong Wang ◽  
Xiaohong Zhang ◽  
...  

Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers.


2021 ◽  
Vol 5 (9) ◽  
pp. 234
Author(s):  
Marwane Rouway ◽  
Mourad Nachtane ◽  
Mostapha Tarfaoui ◽  
Nabil Chakhchaoui ◽  
Lhaj El Hachemi Omari ◽  
...  

Biocomposites based on thermoplastic polymers and natural fibers have recently been used in wind turbine blades, to replace non-biodegradable materials. In addition, carbon nanofillers, including carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs), are being implemented to enhance the mechanical performance of composites. In this work, the Mori–Tanaka approach is used for homogenization of a polymer matrix reinforced by CNT and GNP nanofillers for the first homogenization, and then, for the second homogenization, the effective matrix was used with alfa and E-glass isotropic fibers. The objective is to study the influence of the volume fraction Vf and aspect ratio AR of nanofillers on the elastic properties of the composite. The inclusions are considered in a unidirectional and random orientation by using a computational method by Digimat-MF/FE and analytical approaches by Chamis, Hashin–Rosen and Halpin–Tsai. The results show that CNT- and GNP-reinforced nanocomposites have better performance than those without reinforcement. Additionally, by increasing the volume fraction and aspect ratio of nanofillers, Young’s modulus E increases and Poisson’s ratio ν decreases. In addition, the composites have enhanced mechanical characteristics in the longitudinal orientation for CNT- reinforced polymer and in the transversal orientation for GNP-reinforced polymer.


Sign in / Sign up

Export Citation Format

Share Document