scholarly journals A heterogeneous approach for modelling blood flow in an arterial segment

Author(s):  
A. Di Carlo
Keyword(s):  
2019 ◽  
Vol 16 (03) ◽  
pp. 1842003 ◽  
Author(s):  
Biyue Liu ◽  
Dalin Tang

Computer simulations of the blood flow through right coronary arteries with two stenoses in the same arterial segment are carried out to investigate the interactions of serial stenoses, especially the effect of the distal stenosis. Various mathematical models are developed by varying the location of the distal stenosis. The numerical results show that the variation of the distal stenosis has significant impact on coronary hemodynamics, such as the pressure drop, flow shifting, wall shear stress and flow separation. Our simulations demonstrate that the distal stenosis has insignificant effect on the disturbed flow pattern in the regions of upstream and across the proximal stenosis. In a curved artery segment with two moderate stenoses of the same size, the distal stenosis causes a larger pressure drop and a more disturbed flow field in the poststenotic region than the proximal stenosis does. A distal stenosis located at a further downstream position causes a larger pressure drop and a stronger reverse flow.


Author(s):  
Jessica Manganotti ◽  
Federica Caforio ◽  
François Kimmig ◽  
Philippe Moireau ◽  
Sebastien Imperiale

AbstractIn this work we provide a novel energy-consistent formulation for the classical 1D formulation of blood flow in an arterial segment. The resulting reformulation is shown to be suitable for the coupling with a lumped (0D) model of the heart that incorporates a reduced formulation of the actin-myosin interaction. The coupling being consistent with energy balances, we provide a complete heart-circulation model compatible with thermodynamics hence stable numerically and informative physiologically. These latter two properties are verified by numerical experiments.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Satyasaran Changdar ◽  
Soumen De

An appropriate nonlinear blood flow model under the influence of periodic body acceleration through a multiple stenosed artery is investigated with the help of finite difference method. The arterial segment is simulated by a cylindrical tube filled with a viscous incompressible Newtonian fluid described by the Navier-Stokes equation. The nonlinear equation is solved numerically with the proper boundary conditions and pressure gradient that arise from the normal functioning of the heart. Results are discussed in comparison with the existing models.


Author(s):  
Juan Mejia ◽  
Rosaire Mongrain ◽  
Guy Drapeau ◽  
Josep Cabau-Rodes ◽  
Olivier F. Bertrand

Today cardiac complications are the leading cause of death in the developed world [1]. Millions of people suffer from cardiovascular disease, with most of the cases caused by or related to atherosclerosis. Historically, blood flow in stenosed arteries has been restored by means of balloon angioplasty. In 1987 stents were introduced to the procedure in order to provide structural support to the diseased artery.


2012 ◽  
Vol 05 (05) ◽  
pp. 1250042 ◽  
Author(s):  
A. SINHA ◽  
J. C. MISRA

A theoretical investigation concerning the influence of slip velocity on the flow of blood through an artery having its wall permeable has been carried out. Here blood is treated as a homogeneous Newtonian fluid. The flow is characterized by three parameters: β the ratio of radius to length of the arterial segment, Re the characteristic Reynolds number associated with the pressure outside the arterial segment and ϵ the filtration coefficient. The problem has been solved by the use of a perturbation technique. ϵ is considered to be very small, ensuring the validity of the perturbation method. The computed numerical results are presented graphically to depict the variations in velocity, volumetric flow rate, wall shear stress and flow resistance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Obaid Ullah Mehmood ◽  
Sehrish Bibi ◽  
Dzuliana F. Jamil ◽  
Salah Uddin ◽  
Rozaini Roslan ◽  
...  

AbstractThe current work analyzes the effects of concentric ballooned catheterization and heat transfer on the hybrid nano blood flow through diseased arterial segment having both stenosis and aneurysm along its boundary. A fractional second-grade fluid model is considered which describes the non-Newtonian characteristics of the blood. Governing equations are linearized under mild stenosis and mild aneurysm assumptions. Precise articulations for various important flow characteristics such as heat transfer, hemodynamic velocity, wall shear stress, and resistance impedance are attained. Graphical portrayals for the impact of the significant parameters on the flow attributes have been devised. The streamlines of blood flow have been examined as well. The present finding is useful for drug conveyance system and biomedicines.


Sign in / Sign up

Export Citation Format

Share Document