Measures of information security level protection on sensing layer in Internet of things

Author(s):  
Zhao Jia ◽  
Zhang Qiang ◽  
Gao Bo
Author(s):  
Jairo Eduardo Márquez Díaz

Society is increasingly dependent on technology and an example of this is the constant monitoring of large cities, which has become common and the future trend is for it to increase based on what happened with the COVID-19 pandemic. This monitoring brings with it a series of problems at the information security level at different levels or levels. Based on this fact, it addresses how the Internet of Things (IoT) can be subject to potential distributed denial of service (DDoS) attacks and the danger it poses to society. In this sense, other types of vulnerabilities are exposed, such as crypto hacking, advanced persistent threats (APT) and ransomware, which use artificial intelligence to improve their attack techniques. This poses a potential risk to society from cybersecurity regarding the use and manipulation of information, either by governments, the military and organized criminal groups, de facto violating human rights.


Author(s):  
Hristo Terziev

Internet of Things is a new world for connecting object space in the real world with virtual space in a computer environment. To build IoT as an effective service platform, end users need to trust the system. With the growing quantity of information and communication technologies, the need to ensure information security and improve data security is increasing. One of the potential solutions for this are steganographic methods. Steganography based on the least significant bit (LSB) is a popular and widely used method in the spatial domain.


Author(s):  
Lihua Song ◽  
Xinran Ju ◽  
Zongke Zhu ◽  
Mengchen Li

AbstractInformation security has become a hot topic in Internet of Things (IoT), and traditional centralized access control models are faced with threats such as single point failure, internal attack, and central leak. In this paper, we propose a model to improve the access control security of the IoT, which is based on zero-knowledge proof and smart contract technology in the blockchain. Firstly, we deploy attribute information of access control in the blockchain, which relieves the pressure and credibility problem brought by the third-party information concentration. Secondly, encrypted access control token is used to gain the access permission of the resources, which makes the user's identity invisible and effectively avoids attribute ownership exposure problem. Besides, the use of smart contracts solves the problem of low computing efficiency of IoT devices and the waste of blockchain computing power resources. Finally, a prototype of IoT access control system based on blockchain and zero-knowledge proof technology is implemented. The test analysis results show that the model achieves effective attribute privacy protection, compared with the Attribute-Based Access Control model of the same security level, the access efficiency increases linearly with the increase of access scale.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3257
Author(s):  
Arne Bochem ◽  
Benjamin Leiding

Today, increasing Internet of Things devices are deployed, and the field of applications for decentralized, self-organizing networks keeps growing. The growth also makes these systems more attractive to attackers. Sybil attacks are a common issue, especially in decentralized networks and networks that are deployed in scenarios with irregular or unreliable Internet connectivity. The lack of a central authority that can be contacted at any time allows attackers to introduce arbitrary amounts of nodes into the network and manipulate its behavior according to the attacker’s goals, by posing as a majority participant. Depending on the structure of the network, employing Sybil node detection schemes may be difficult, and low powered Internet of Things devices are usually unable to perform impactful amounts of work for proof-of-work based schemes. In this paper, we present Rechained, a scheme that monetarily disincentivizes the creation of Sybil identities for networks that can operate with intermittent or no Internet connectivity. We introduce a new revocation mechanism for identities, tie them into the concepts of self-sovereign identities, and decentralized identifiers. Case-studies are used to discuss upper- and lower-bounds for the costs of Sybil identities and, therefore, the provided security level. Furthermore, we formalize the protocol using Colored Petri Nets to analyze its correctness and suitability. Proof-of-concept implementations are used to evaluate the performance of our scheme on low powered hardware as it might be found in Internet of Things applications.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4034
Author(s):  
Arie Haenel ◽  
Yoram Haddad ◽  
Maryline Laurent ◽  
Zonghua Zhang

The Internet of Things world is in need of practical solutions for its security. Existing security mechanisms for IoT are mostly not implemented due to complexity, budget, and energy-saving issues. This is especially true for IoT devices that are battery powered, and they should be cost effective to be deployed extensively in the field. In this work, we propose a new cross-layer approach combining existing authentication protocols and existing Physical Layer Radio Frequency Fingerprinting technologies to provide hybrid authentication mechanisms that are practically proved efficient in the field. Even though several Radio Frequency Fingerprinting methods have been proposed so far, as a support for multi-factor authentication or even on their own, practical solutions are still a challenge. The accuracy results achieved with even the best systems using expensive equipment are still not sufficient on real-life systems. Our approach proposes a hybrid protocol that can save energy and computation time on the IoT devices side, proportionally to the accuracy of the Radio Frequency Fingerprinting used, which has a measurable benefit while keeping an acceptable security level. We implemented a full system operating in real time and achieved an accuracy of 99.8% for the additional cost of energy, leading to a decrease of only ~20% in battery life.


Heliyon ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e06522
Author(s):  
Kwesi Hughes-Lartey ◽  
Meng Li ◽  
Francis E. Botchey ◽  
Zhen Qin

2014 ◽  
Author(s):  
Ionuţ-Daniel BARBU ◽  
Gabriel PETRICĂ

With the advent of Internet of Things, large number of devices became connected to the cloud via various services. From an Information Security perspective, this aspect adds additional tasks to the defense in depth layers. This article tackles the authentication level and its options. This topic has been chosen, as user/password authentication is obsolete and no longer secure. Despite the increased complexity of the passwords, the use of rainbow tables and the large processing power available, the systems are vulnerable to brute force attacks.


Author(s):  
Abhishek Rajeshkumar Mehta ◽  
Trupti Pravinsinh Rathod

Internet of things (IoT) is a typical thing (object) in this day and age, which fills in as a component of our standard life exercises. In spite of the fact that it benefits the private region in a few different ways, different difficulties, for example information classification and protection, are made. Web of things (IoT) is all over the place and utilized in a lot more advantageous functionality. It is utilized in our homes, clinics, fire counteraction, and announcing and controlling of ecological changes. Information security is an urgent prerequisite for IoT since the number of late advances in various spaces is expanding step by step. Different endeavors have been set to sate the client's expectations for greater security and protection.


Sign in / Sign up

Export Citation Format

Share Document