The relational models for the effects of sowing dates and planting density on plant growth and yield of autumn soybean

Author(s):  
Liu Wei Ming ◽  
Wang En Guo
2012 ◽  
Vol 92 (5) ◽  
pp. 937-949 ◽  
Author(s):  
Yi Zhang ◽  
Liping Feng ◽  
Enli Wang ◽  
Jing Wang ◽  
Baoguo Li

Zhang, Y., Feng, L., Wang, E., Wang, J. and Li, B. 2012. Evaluation of the APSIM-Wheat model in terms of different cultivars, management regimes and environmental conditions. Can. J. Plant Sci. 92: 937–949. Wheat is one of the most important crops in the world, and wheat models have been widely used to study yield responses to changes in management and climate. However, less information is available on how a wheat model performs in simulation of wheat response to changes in varieties, sowing dates and planting densities across space. This study presents an evaluation of the APSIM-Wheat model using data from field experiments consisting of three sowing dates, two and three crop varieties and three planting densities in a split-split plot design at three ecological sites from 2008 to 2010 in the North China Plain. The results show that the APSIM-Wheat model could capture a large part of the variation in phenology, biomass and yield for the same variety across sites. However, errors of simulation in phenology and yield were increased with delay in sowing date, with the average absolute root mean square errors of 2 d, 3 d, and 3–4 d in phenology, and the normalized root mean square error (RMSEn) of 7–12%, 11–16%, 16–22% in yield at early, medium, and late sowing dates, respectively. Simulation of yield achieved poor results with decreased planting density, with average RMSEn of 9–12%, 11–12%, and 16–19% at high, medium, and low density, respectively. Additionally, the simulation behaved in a complex manner, and the errors varied greatly with different combinations of sowing dates and planting densities. These alerted us that the model should be used cautiously to simulate growth and yield over a wide range of sowing dates and planting densities. Improved modeling of the responses of wheat growth to extreme temperatures during winter and spring periods, and to varying planting densities is needed for better future prediction. Other areas of model improvements are also discussed.


2017 ◽  
pp. 44-54
Author(s):  
Zenaida Gonzaga ◽  
Warren Obeda ◽  
Ana Linda Gorme ◽  
Jessie Rom ◽  
Oscar Abrantes ◽  
...  

Okra or Lady’s finger, botanically known as Abelmoschus esculentus (L.) Moench, is a tropical and sub-tropical indigenous vegetable crop commonly grown for its fibrous, slimy, and nutritious fruits and consumed by all classes of population. It has also several medicinal and economic values. Despite its many uses and potential value, its importance is under estimated, under-utilized, and considered a minor crop and little attention was paid to its improvement. The study was conducted to evaluate the effects of different planting densities and mulching materials on the growth and yield of okra grown in slightly sloping area in the marginal uplands in Sta. Rita, Samar, Philippines. A split-plot experiment was set up with planting density as main plot and the different mulching materials as the sub-plot which were: unmulched or bare soil, rice straw, rice hull, hagonoy and plastic mulch. Planting density did not significantly affect the growth and yield of okra. Regardless ofthe mulching materials used, mulched plants were taller and yielded higher compared to unmulched plants. Moreover, the use of plastic mulch resulted to the highest total fruit yield. The results indicate the potential of mulching in increasing yield and thus profitability of okra production under marginal upland conditions.


1970 ◽  
Vol 17 ◽  
pp. 17-22 ◽  
Author(s):  
Kamal Singh ◽  
A. A. Khan ◽  
Iram Khan ◽  
Rose Rizvi ◽  
M. Saquib

Plant growth, yield, pigment and protein content of cow-pea were increased significantly at lower levels (20 and 40%) of fly ash but reverse was true at higher levels (80 and 100%). Soil amended by 60% fly ash could cause suppression in growth and yield in respect to 40% fly ash treated cow-pea plants but former was found at par with control (fly ash untreated plants). Maximum growth occurred in plants grown in soil amended with 40% fly ash. Nitrogen content of cow-pea was suppressed progressively in increasing levels of fly ash. Moreover,  Rhizobium leguminosarum  influenced the growth and yield positively but Meloidogyne javanica caused opposite effects particularly at 20 and 40% fly ash levels. The positive effects of R. leguminosarum were marked by M. javanica at initial levels. However, at 80 and 100% fly ash levels, the positive and negative effects of R. leguminosarum and/or M. javanica did not appear as insignificant difference persist among such treatments.Key words:  Meloidogyne javanica; Rhizobium leguminosarum; Fly ash; Growth; YieldDOI: 10.3126/eco.v17i0.4098Ecoprint An International Journal of Ecology Vol. 17, 2010 Page: 17-22 Uploaded date: 28 December, 2010  


Sign in / Sign up

Export Citation Format

Share Document