scholarly journals Modelling the impact of pulsing of drip irrigation on the water and salinity dynamics in soil in relation to water uptake by an almond tree

Author(s):  
V. Phogat ◽  
M. A. Skewes ◽  
J. W. Cox ◽  
M. Mahadevan
Biologia ◽  
2006 ◽  
Vol 61 (19) ◽  
Author(s):  
David Zumr ◽  
Michal Dohnal ◽  
Miroslav Hrnčíř ◽  
Milena Císlerová ◽  
Tomáš Vogel ◽  
...  

AbstractIn agricultural lands has the soil moisture uptake from the root system a significant effect on the water regime of the soil profile. In texturally heavy soils, where preferential pathways are present, infiltrated precipitation and irrigation water with diluted fertilizers quickly penetrate to a significant depth and often reach an under-root zone or even the ground-water level. Such a scenario is likely to happen during long summer periods without rain followed by heavy precipitation events, when a part of the water may flow through desiccated cracks.Since 2001 the effects of drip irrigation and nitrogen fertilization of potatoes (Solanum tuberosum L., cultivar Agria) have been monitored within the frame of a research project at the experimental site Valecov (Czech Republic). Based upon the measured data an attempt has been made to simulate the water regime of the soil profile at a selected experimental plot, considering the impact of preferential flow and root water uptake. The dual-permeability simulation model S_1D_Dual (VOGEL et al., 2000) was used for the simulation. The soil hydraulic parameters were inversely determined using Levenberg-Marquardt method. Measured and simulated pressure heads were utilized in the optimization criterion. The scaling approach was applied to simplify the description of the spatial variability of the soil profile.The results of simulations demonstrate that during particular rainfall events the water reaches significant depths of the soil profile via preferential pathways. The effect of the root zone is dominant during dry periods, when capillary water uptake from the layers below roots becomes important. This should be taken in account into the optimization of the drip irrigation and nitrogen fertilization schedule.


Author(s):  
Fatemeh Alizadeh ◽  
Navid Kharghani ◽  
Carlos Guedes Soares

Glass/Vinylester composite laminates are comprehensively characterised to assess its impact response behaviour under moisture exposure in marine structures. An instrumented drop weight impact machine is utilised to determine the impact responses of dry and immersed specimens in normal, salted and sea water. The specimens, which had three different thicknesses, were subjected to water exposure for a very long period of over 20 months before tested in a low-velocity impact experiment. Water uptake was measured primarily to study the degradation profiles of GRP laminates after being permeated by water. Matrix dissolution and interfacial damage observed on the laminates after prolonged moisture exposure while the absorption behaviour was found typically non-Fickian. The weight of the composite plates firstly increased because of water diffusion up to month 15 and then decreased due to matrix degradation. The specimens with 3, 6 and 9 mm thickness exhibited maximum water absorption corresponding to 2.6%, 0.7% and 0.5% weight gain, respectively. In general, the results indicated that water uptake and impact properties were affected by thickness and less by water type. Impact properties of prolonged immersed specimens reduced remarkably, and intense failure modes detected almost in all cases. The least sensitive to impact damage were wet specimens with 9 mm thickness as they indicated similar maximum load and absorbed energy for different impact energies.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Claire Dislaire ◽  
Yves Grohens ◽  
Bastien Seantier ◽  
Marion Muzy

AbstractThis study was carried out using bleached softwood Chemi-Thermo-Mechanical Pulp to evaluate the influence of Molded Pulp Products’ manufacturing process parameters on the finished products’ mechanical and hygroscopic properties. A Taguchi table was done to make 8 tests with specific process parameters such as moulds temperature, pulping time, drying time, and pressing time. The results of these tests were used to obtain an optimized manufacturing process with improved mechanical properties and a lower water uptake after sorption analysis and water immersion. The optimized process parameters allowed us to improve the Young’ Modulus after 30h immersion of 58% and a water uptake reduction of 78% with the first 8 tests done.


2021 ◽  
Author(s):  
Sandra Pool ◽  
Félix Francés ◽  
Alberto Garcia-Prats ◽  
Manuel Pulido-Velazquez ◽  
Carles Sanichs-Ibor ◽  
...  

<p>Irrigated agriculture is the major water consumer in the Mediterranean region. Improved irrigation techniques have been widely promoted to reduce water withdrawals and increase resilience to climate change impacts. In this study, we assess the impact of the ongoing transition from flood to drip irrigation on future hydroclimatic regimes in the agricultural areas of Valencia (Spain). The impact assessment is conducted for a control period (1971-2000), a near-term future (2020-2049) and a mid-term future (2045-2074) using a chain of models that includes five GCM-RCM combinations, two emission scenarios (RCP 4.5 and RCP 8.5), two irrigation scenarios (flood and drip irrigation), and twelve parameterizations of the hydrological model Tetis. Results of this modelling chain suggest considerable uncertainties regarding the magnitude and sign of future hydroclimatic changes. Yet, climate change could lead to a statistically significant decrease in future groundwater recharge of up -6.6% in flood irrigation and -9.3% in drip irrigation. Projected changes in actual evapotranspiration are as well statistically significant, but in the order of +1% in flood irrigation and -2.1% in drip irrigation under the assumption of business as usual irrigation schedules. The projected changes and the related uncertainties will pose a challenging context for future water management. However, our findings further indicate that the effect of the choice of irrigation technique may have a greater impact on hydroclimate than climate change alone. Explicitly considering irrigation techniques in climate change impact assessment might therefore be a way towards better informed decision-making.</p><p>This study has been supported by the IRRIWAM research project funded by the Coop Research Program of the ETH Zurich World Food System Center and the ETH Zurich Foundation, and by the ADAPTAMED (RTI2018-101483-B-I00) and TETISCHANGE (RTI2018-093717-B-I00) research projects funded by the Ministerio de Economia y Competitividad (MINECO) of Spain including EU FEDER funds.</p>


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 562 ◽  
Author(s):  
Jeroen D.M. Schreel ◽  
Jonas S. von der Crone ◽  
Ott Kangur ◽  
Kathy Steppe

Foliar water uptake (FWU) has been investigated in an increasing number of species from a variety of areas but has remained largely understudied in deciduous, temperate tree species from non-foggy regions. As leaf wetting events frequently occur in temperate regions, FWU might be more important than previously thought and should be investigated. As climate change progresses, the number of drought events is expected to increase, basically resulting in a decreasing number of leaf wetting events, which might make FWU a seemingly less important mechanism. However, the impact of drought on FWU might not be that unidirectional because drought will also cause a more negative tree water potential, which is expected to result in more FWU. It yet remains unclear whether drought results in a general increase or decrease in the amount of water absorbed by leaves. The main objectives of this study are, therefore: (i) to assess FWU-capacity in nine widely distributed key tree species from temperate regions, and (ii) to investigate the effect of drought on FWU in these species. Based on measurements of leaf and soil water potential and FWU-capacity, the effect of drought on FWU in temperate tree species was assessed. Eight out of nine temperate tree species were able to absorb water via their leaves. The amount of water absorbed by leaves and the response of this plant trait to drought were species-dependent, with a general increase in the amount of water absorbed as leaf water potential decreased. This relationship was less pronounced when using soil water potential as an independent variable. We were able to classify species according to their response in FWU to drought at the leaf level, but this classification changed when using drought at the soil level, and was driven by iso- and anisohydric behavior. FWU hence occurred in several key tree species from temperate regions, be it with some variability, which potentially allows these species to partly reduce the effects of drought stress. We recommend including this mechanism in future research regarding plant–water relations and to investigate the impact of different pathways used for FWU.


2018 ◽  
Vol 202 ◽  
pp. 57-65
Author(s):  
M. Espadafor ◽  
F. Orgaz ◽  
L. Testi ◽  
I.J. Lorite ◽  
O. García-Tejera ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 893 ◽  
Author(s):  
Romysaa Elasbah ◽  
Tarek Selim ◽  
Ahmed Mirdan ◽  
Ronny Berndtsson

Frequent application of nitrogen fertilizers through irrigation is likely to increase the concentration of nitrate in groundwater. In this study, the HYDRUS-2D/3D model was used to simulate fertilizer movement through the soil under surface (DI) and subsurface drip irrigation (SDI) with 10 and 20 cm emitter depths for tomato growing in three different typical and representative Egyptian soil types, namely sand, loamy sand, and sandy loam. Ammonium, nitrate, phosphorus, and potassium fertilizers were considered during simulation. Laboratory experiments were conducted to estimate the soils’ adsorption behavior. The impact of soil hydraulic properties and fertigation strategies on fertilizer distribution and use efficiency were investigated. Results showed that for DI, the percentage of nitrogen accumulated below the zone of maximum root density was 33%, 28%, and 24% for sand, loamy sand, and sandy loam soil, respectively. For SDI with 10 and 20 cm emitter depths, it was 34%, 29%, and 26%, and 44%, 37%, and 35%, respectively. Results showed that shallow emitter depth produced maximum nitrogen use efficiency varying from 27 to 37%, regardless of fertigation strategy. Therefore, subsurface drip irrigation with a shallow emitter depth is recommended for medium-textured soils. Moreover, the study showed that to reduce potential fertilizer leaching, fertilizers should be added at the beginning of irrigation events for SDI and at the end of irrigation events for DI. As nitrate uptake rate and leaching are affected by soil’s adsorption, it is important to determine the adsorption coefficient for nitrate before planting, as it will help to precisely assign application rates. This will lead to improve nutrient uptake and minimize potential leaching.


2019 ◽  
Vol 18 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Magdalena Landl ◽  
Andrea Schnepf ◽  
Daniel Uteau ◽  
Stephan Peth ◽  
Miriam Athmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document