scholarly journals Unsupervised Disentangled Representation Learning with Analogical Relations

Author(s):  
Zejian Li ◽  
Yongchuan Tang ◽  
Yongxing He

Learning the disentangled representation of interpretable generative factors of data is one of the foundations to allow artificial intelligence to think like people. In this paper, we propose the analogical training strategy for the unsupervised disentangled representation learning in generative models. The analogy is one of the typical cognitive processes, and our proposed strategy is based on the observation that sample pairs in which one is different from the other in one specific generative factor show the same analogical relation. Thus, the generator is trained to generate sample pairs from which a designed classifier can identify the underlying analogical relation. In addition, we propose a disentanglement metric called the subspace score, which is inspired by subspace learning methods and does not require supervised information. Experiments show that our proposed training strategy allows the generative models to find the disentangled factors, and that our methods can give competitive performances as compared with the state-of-the-art methods.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4486
Author(s):  
Niall O’Mahony ◽  
Sean Campbell ◽  
Lenka Krpalkova ◽  
Anderson Carvalho ◽  
Joseph Walsh ◽  
...  

Fine-grained change detection in sensor data is very challenging for artificial intelligence though it is critically important in practice. It is the process of identifying differences in the state of an object or phenomenon where the differences are class-specific and are difficult to generalise. As a result, many recent technologies that leverage big data and deep learning struggle with this task. This review focuses on the state-of-the-art methods, applications, and challenges of representation learning for fine-grained change detection. Our research focuses on methods of harnessing the latent metric space of representation learning techniques as an interim output for hybrid human-machine intelligence. We review methods for transforming and projecting embedding space such that significant changes can be communicated more effectively and a more comprehensive interpretation of underlying relationships in sensor data is facilitated. We conduct this research in our work towards developing a method for aligning the axes of latent embedding space with meaningful real-world metrics so that the reasoning behind the detection of change in relation to past observations may be revealed and adjusted. This is an important topic in many fields concerned with producing more meaningful and explainable outputs from deep learning and also for providing means for knowledge injection and model calibration in order to maintain user confidence.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


2021 ◽  
Author(s):  
Kai Guo ◽  
Zhenze Yang ◽  
Chi-Hua Yu ◽  
Markus J. Buehler

This review revisits the state of the art of research efforts on the design of mechanical materials using machine learning.


Author(s):  
Mauro Vallati ◽  
Lukáš Chrpa ◽  
Thomas L. Mccluskey

AbstractThe International Planning Competition (IPC) is a prominent event of the artificial intelligence planning community that has been organized since 1998; it aims at fostering the development and comparison of planning approaches, assessing the state-of-the-art in planning and identifying new challenging benchmarks. IPC has a strong impact also outside the planning community, by providing a large number of ready-to-use planning engines and testing pioneering applications of planning techniques.This paper focusses on the deterministic part of IPC 2014, and describes format, participants, benchmarks as well as a thorough analysis of the results. Generally, results of the competition indicates some significant progress, but they also highlight issues and challenges that the planning community will have to face in the future.


1967 ◽  
Vol 71 (677) ◽  
pp. 342-343
Author(s):  
F. H. East

The Aviation Group of the Ministry of Technology (formerly the Ministry of Aviation) is responsible for spending a large part of the country's defence budget, both in research and development on the one hand and production or procurement on the other. In addition, it has responsibilities in many non-defence fields, mainly, but not exclusively, in aerospace.Few developments have been carried out entirely within the Ministry's own Establishments; almost all have required continuous co-operation between the Ministry and Industry. In the past the methods of management and collaboration and the relative responsibilities of the Ministry and Industry have varied with time, with the type of equipment to be developed, with the size of the development project and so on. But over the past ten years there has been a growing awareness of the need to put some system into the complex business of translating a requirement into a specification and a specification into a product within reasonable bounds of time and cost.


2020 ◽  
Vol 6 (2) ◽  
pp. 135-161
Author(s):  
Diego Alejandro Borbón Rodríguez ◽  
◽  
Luisa Fernanda Borbón Rodríguez ◽  
Jeniffer Laverde Pinzón

Advances in neurotechnologies and artificial intelligence have led to an innovative proposal to establish ethical and legal limits to the development of technologies: Human NeuroRights. In this sense, the article addresses, first, some advances in neurotechnologies and artificial intelligence, as well as their ethical implications. Second, the state of the art on the innovative proposal of Human NeuroRights is exposed, specifically, the proposal of the NeuroRights Initiative of Columbia University. Third, the proposal for the rights of free will and equitable access to augmentation technologies is critically analyzed to conclude that, although it is necessary to propose new regulations for neurotechnologies and artificial intelligence, the debate is still very premature as if to try to incorporate a new category of human rights that may be inconvenient or unnecessary. Finally, some considerations on how to regulate new technologies are explained and the conclusions of the work are presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jifeng Guo ◽  
Zhiqi Pang ◽  
Wenbo Sun ◽  
Shi Li ◽  
Yu Chen

Active learning aims to select the most valuable unlabelled samples for annotation. In this paper, we propose a redundancy removal adversarial active learning (RRAAL) method based on norm online uncertainty indicator, which selects samples based on their distribution, uncertainty, and redundancy. RRAAL includes a representation generator, state discriminator, and redundancy removal module (RRM). The purpose of the representation generator is to learn the feature representation of a sample, and the state discriminator predicts the state of the feature vector after concatenation. We added a sample discriminator to the representation generator to improve the representation learning ability of the generator and designed a norm online uncertainty indicator (Norm-OUI) to provide a more accurate uncertainty score for the state discriminator. In addition, we designed an RRM based on a greedy algorithm to reduce the number of redundant samples in the labelled pool. The experimental results on four datasets show that the state discriminator, Norm-OUI, and RRM can improve the performance of RRAAL, and RRAAL outperforms the previous state-of-the-art active learning methods.


2020 ◽  
Vol 6 (16) ◽  
pp. eaay2631 ◽  
Author(s):  
Silviu-Marian Udrescu ◽  
Max Tegmark

A core challenge for both physics and artificial intelligence (AI) is symbolic regression: finding a symbolic expression that matches data from an unknown function. Although this problem is likely to be NP-hard in principle, functions of practical interest often exhibit symmetries, separability, compositionality, and other simplifying properties. In this spirit, we develop a recursive multidimensional symbolic regression algorithm that combines neural network fitting with a suite of physics-inspired techniques. We apply it to 100 equations from the Feynman Lectures on Physics, and it discovers all of them, while previous publicly available software cracks only 71; for a more difficult physics-based test set, we improve the state-of-the-art success rate from 15 to 90%.


Sign in / Sign up

Export Citation Format

Share Document