scholarly journals Self-Guided Community Detection on Networks with Missing Edges

Author(s):  
Dongxiao He ◽  
Shuai Li ◽  
Di Jin ◽  
Pengfei Jiao ◽  
Yuxiao Huang

The vast majority of community detection algorithms assume that the networks are totally observed. However, in reality many networks cannot be fully observed. On such network is edges-missing network, where some relationships (edges) between two entities are missing. Recently, several works have been proposed to solve this problem by combining link prediction and community detection in a two-stage method or in a unified framework. However, the goal of link prediction, which is to predict as many correct edges as possible, is not consistent with the requirement for predicting the important edges for discovering community structure on edges-missing networks. Thus, combining link prediction and community detection cannot work very well in terms of detecting community structure for edges-missing network. In this paper, we propose a community self-guided generative model which jointly completes the edges-missing network and identifies communities. In our new model, completing missing edges and identifying communities are not isolated but closely intertwined. Furthermore, we developed an effective model inference method that combines a nested Expectation-Maximization (EM) algorithm and Metropolis-Hastings Sampling. Extensive experiments on real-world edges-missing networks show that our model can effectively detect community structures while completing missing edges.

2019 ◽  
Vol 30 (11) ◽  
pp. 1950079
Author(s):  
Mengjia Shen ◽  
Dong Lv ◽  
Zhixin Ma

Community structure is a common characteristic of complex networks and community detection is an important methodology to reveal the structure of real-world networks. In recent years, many algorithms have been proposed to detect the high-quality communities in real-world networks. However, these algorithms have shortcomings of performing calculation on the whole network or defining objective function and the number of commonties in advance, which affects the performance and complexity of community detection algorithms. In this paper, a novel algorithm has been proposed to detect communities in networks by belonging intensity analysis of intermediate nodes, named BIAS, which is inspired from the interactive behavior in human communication networks. More specifically, intermediate nodes are middlemen between different groups in social networks. BIAS algorithm defines belonging intensity using local interactions and metrics between nodes, and the belonging intensity of intermediate node in different communities is analyzed to distinguish which community the intermediate node belongs to. The experiments of our algorithm with other state-of-the-art algorithms on synthetic networks and real-world networks have shown that BIAS algorithm has better accuracy and can significantly improve the quality of community detection without prior information.


2014 ◽  
Vol 28 (09) ◽  
pp. 1450074 ◽  
Author(s):  
Benyan Chen ◽  
Ju Xiang ◽  
Ke Hu ◽  
Yi Tang

Community structure is an important topological property common to many social, biological and technological networks. First, by using the concept of the structural weight, we introduced an improved version of the betweenness algorithm of Girvan and Newman to detect communities in networks without (intrinsic) edge weight and then extended it to networks with (intrinsic) edge weight. The improved algorithm was tested on both artificial and real-world networks, and the results show that it can more effectively detect communities in networks both with and without (intrinsic) edge weight. Moreover, the technique for improving the betweenness algorithm in the paper may be directly applied to other community detection algorithms.


2019 ◽  
Vol 33 (07) ◽  
pp. 1950076 ◽  
Author(s):  
Wenjie Zhou ◽  
Xingyuan Wang ◽  
Chuan Zhang ◽  
Rui Li ◽  
Chunpeng Wang

Community detection is one of the primary tools to discover useful information that is hidden in complex networks. Some community detection algorithms for bipartite networks have been proposed from various viewpoints. However, the performance of these algorithms deteriorates when the community structure becomes unclear. Enhancing community structure remains a nontrivial task. In this paper, we propose a community detection algorithm, called ECD, that enhances community structure in bipartite networks. In the proposed ECD, the topology of a network is modified by reducing unnecessary edges that are connected to neighboring low-weight communities. Therefore, an ambiguous community structure is converted into a structure that is much clearer than the original structure. The experimental results on both artificial and real-world networks verify the accuracy and reliability of our algorithm. Compared with existing community detection algorithms using state-of-the-art methods, our algorithm has better performance.


2017 ◽  
Vol 31 (15) ◽  
pp. 1750121 ◽  
Author(s):  
Fang Hu ◽  
Youze Zhu ◽  
Yuan Shi ◽  
Jianchao Cai ◽  
Luogeng Chen ◽  
...  

In this paper, based on Walktrap algorithm with the idea of random walk, and by selecting the neighbor communities, introducing improved signed probabilistic mixture (SPM) model and considering the edges within the community as positive links and the edges between the communities as negative links, a novel algorithm Walktrap-SPM for detecting overlapping community is proposed. This algorithm not only can identify the overlapping communities, but also can greatly increase the objectivity and accuracy of the results. In order to verify the accuracy, the performance of this algorithm is tested on several representative real-world networks and a set of computer-generated networks based on LFR benchmark. The experimental results indicate that this algorithm can identify the communities accurately, and it is more suitable for overlapping community detection. Compared with Walktrap, SPM and LMF algorithms, the presented algorithm can acquire higher values of modularity and NMI. Moreover, this new algorithm has faster running time than SPM and LMF algorithms.


2015 ◽  
Vol 719-720 ◽  
pp. 1198-1202
Author(s):  
Ming Yang Zhou ◽  
Zhong Qian Fu ◽  
Zhao Zhuo

Practical networks have community and hierarchical structure. These complex structures confuse the community detection algorithms and obscure the boundaries of communities. This paper proposes a delicate method which synthesizes spectral analysis and local synchronization to detect communities. Communities emerge automatically in the multi-dimension space of nontrivial eigenvectors. Its performance is compared to that of previous methods and applied to different practical networks. Our results perform better than that of other methods. Besides, it’s more robust for networks whose communities have different edge density and follow various degree distributions. This makes the algorithm a valuable tool to detect and analysis large practical networks with various community structures.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jianjun Cheng ◽  
Wenbo Zhang ◽  
Haijuan Yang ◽  
Xing Su ◽  
Tao Ma ◽  
...  

The centrality plays an important role in many community-detection algorithms, which depend on various kinds of centralities to identify seed vertices of communities first and then expand each of communities based on the seeds to get the resulting community structure. The traditional algorithms always use a single centrality measure to recognize seed vertices from the network, but each centrality measure has both pros and cons when being used in this circumstance; hence seed vertices identified using a single centrality measure might not be the best ones. In this paper, we propose a framework which integrates advantages of various centrality measures to identify the seed vertices from the network based on the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) multiattribute decision-making technology. We take each of the centrality measures involved as an attribute, rank vertices according to the scores which are calculated for them using TOPSIS, and then take vertices with top ranks as the seeds. To put this framework into practice, we concretize it in this paper by considering four centrality measures as attributes to identify the seed vertices of communities first, then expanding communities by iteratively inserting one unclassified vertex into the community to which its most similar neighbor belongs, and the similarity between them is the largest among all pairs of vertices. After that, we obtain the initial community structure. However, the amount of communities might be much more than they should be, and some communities might be too small to make sense. Therefore, we finally consider a postprocessing procedure to merge some initial communities into larger ones to acquire the resulting community structure. To test the effectiveness of the proposed framework and method, we have performed extensive experiments on both some synthetic networks and some real-world networks; the experimental results show that the proposed method can get better results, and the quality of the detected community structure is much higher than those of competitors.


2018 ◽  
Vol 29 (12) ◽  
pp. 1850119
Author(s):  
Jingming Zhang ◽  
Jianjun Cheng ◽  
Xiaosu Feng ◽  
Xiaoyun Chen

Identifying community structure in networks plays an important role in understanding the network structure and analyzing the network features. Many state-of-the-art algorithms have been proposed to identify the community structure in networks. In this paper, we propose a novel method based on closure extension; it performs in two steps. The first step uses the similarity closure or correlation closure to find the initial community structure. In the second step, we merge the initial communities using Modularity [Formula: see text]. The proposed method does not need any prior information such as the number or sizes of communities, and it is able to obtain the same resulting communities in multiple runs. Moreover, it is noteworthy that our method has low computational complexity because of considering only local information of network. Some real-world and synthetic graphs are used to test the performance of the proposed method. The results demonstrate that our method can detect deterministic and informative community structure in most cases.


2007 ◽  
Vol 07 (03) ◽  
pp. L209-L214 ◽  
Author(s):  
JUSSI M. KUMPULA ◽  
JARI SARAMÄKI ◽  
KIMMO KASKI ◽  
JÁNOS KERTÉSZ

Detecting community structure in real-world networks is a challenging problem. Recently, it has been shown that the resolution of methods based on optimizing a modularity measure or a corresponding energy is limited; communities with sizes below some threshold remain unresolved. One possibility to go around this problem is to vary the threshold by using a tuning parameter, and investigate the community structure at variable resolutions. Here, we analyze the resolution limit and multiresolution behavior for two different methods: a q-state Potts method proposed by Reichard and Bornholdt, and a recent multiresolution method by Arenas, Fernández, and Gómez. These methods are studied analytically, and applied to three test networks using simulated annealing.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Fanrong Meng ◽  
Feng Zhang ◽  
Mu Zhu ◽  
Yan Xing ◽  
Zhixiao Wang ◽  
...  

Community detection in complex networks has become a research hotspot in recent years. However, most of the existing community detection algorithms are designed for the static networks; namely, the connections between the nodes are invariable. In this paper, we propose an incremental density-based link clustering algorithm for community detection in dynamic networks, iDBLINK. This algorithm is an extended version of DBLINK which is proposed in our previous work. It can update the local link community structure in the current moment through the change of similarity between the edges at the adjacent moments, which includes the creation, growth, merging, deletion, contraction, and division of link communities. Extensive experimental results demonstrate that iDBLINK not only has a great time efficiency, but also maintains a high quality community detection performance when the network topology is changing.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Kun Deng ◽  
Jianpei Zhang ◽  
Jing Yang

Since traditional mobile recommendation systems have difficulty in acquiring complete and accurate user information in mobile networks, the accuracy of recommendation is not high. In order to solve this problem, this paper proposes a novel mobile recommendation algorithm based on link community detection (MRLD). MRLD executes link label diffusion algorithm and maximal extended modularity (EQ) of greedy search to obtain the link community structure, and overlapping nodes belonging analysis (ONBA) is adopted to adjust the overlapping nodes in order to get the more accurate community structure. MRLD is tested on both synthetic and real-world networks, and the experimental results show that our approach is valid and feasible.


Sign in / Sign up

Export Citation Format

Share Document