Community detection via closure extension

2018 ◽  
Vol 29 (12) ◽  
pp. 1850119
Author(s):  
Jingming Zhang ◽  
Jianjun Cheng ◽  
Xiaosu Feng ◽  
Xiaoyun Chen

Identifying community structure in networks plays an important role in understanding the network structure and analyzing the network features. Many state-of-the-art algorithms have been proposed to identify the community structure in networks. In this paper, we propose a novel method based on closure extension; it performs in two steps. The first step uses the similarity closure or correlation closure to find the initial community structure. In the second step, we merge the initial communities using Modularity [Formula: see text]. The proposed method does not need any prior information such as the number or sizes of communities, and it is able to obtain the same resulting communities in multiple runs. Moreover, it is noteworthy that our method has low computational complexity because of considering only local information of network. Some real-world and synthetic graphs are used to test the performance of the proposed method. The results demonstrate that our method can detect deterministic and informative community structure in most cases.

2019 ◽  
Vol 33 (07) ◽  
pp. 1950076 ◽  
Author(s):  
Wenjie Zhou ◽  
Xingyuan Wang ◽  
Chuan Zhang ◽  
Rui Li ◽  
Chunpeng Wang

Community detection is one of the primary tools to discover useful information that is hidden in complex networks. Some community detection algorithms for bipartite networks have been proposed from various viewpoints. However, the performance of these algorithms deteriorates when the community structure becomes unclear. Enhancing community structure remains a nontrivial task. In this paper, we propose a community detection algorithm, called ECD, that enhances community structure in bipartite networks. In the proposed ECD, the topology of a network is modified by reducing unnecessary edges that are connected to neighboring low-weight communities. Therefore, an ambiguous community structure is converted into a structure that is much clearer than the original structure. The experimental results on both artificial and real-world networks verify the accuracy and reliability of our algorithm. Compared with existing community detection algorithms using state-of-the-art methods, our algorithm has better performance.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vesa Kuikka

AbstractWe present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


2017 ◽  
Vol 31 (15) ◽  
pp. 1750121 ◽  
Author(s):  
Fang Hu ◽  
Youze Zhu ◽  
Yuan Shi ◽  
Jianchao Cai ◽  
Luogeng Chen ◽  
...  

In this paper, based on Walktrap algorithm with the idea of random walk, and by selecting the neighbor communities, introducing improved signed probabilistic mixture (SPM) model and considering the edges within the community as positive links and the edges between the communities as negative links, a novel algorithm Walktrap-SPM for detecting overlapping community is proposed. This algorithm not only can identify the overlapping communities, but also can greatly increase the objectivity and accuracy of the results. In order to verify the accuracy, the performance of this algorithm is tested on several representative real-world networks and a set of computer-generated networks based on LFR benchmark. The experimental results indicate that this algorithm can identify the communities accurately, and it is more suitable for overlapping community detection. Compared with Walktrap, SPM and LMF algorithms, the presented algorithm can acquire higher values of modularity and NMI. Moreover, this new algorithm has faster running time than SPM and LMF algorithms.


2021 ◽  
Vol 30 (4) ◽  
pp. 441-455
Author(s):  
Rinat Aynulin ◽  
◽  
Pavel Chebotarev ◽  
◽  

Proximity measures on graphs are extensively used for solving various problems in network analysis, including community detection. Previous studies have considered proximity measures mainly for networks without attributes. However, attribute information, node attributes in particular, allows a more in-depth exploration of the network structure. This paper extends the definition of a number of proximity measures to the case of attributed networks. To take node attributes into account, attribute similarity is embedded into the adjacency matrix. Obtained attribute-aware proximity measures are numerically studied in the context of community detection in real-world networks.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 407 ◽  
Author(s):  
Dominik Weikert ◽  
Sebastian Mai ◽  
Sanaz Mostaghim

In this article, we present a new algorithm called Particle Swarm Contour Search (PSCS)—a Particle Swarm Optimisation inspired algorithm to find object contours in 2D environments. Currently, most contour-finding algorithms are based on image processing and require a complete overview of the search space in which the contour is to be found. However, for real-world applications this would require a complete knowledge about the search space, which may not be always feasible or possible. The proposed algorithm removes this requirement and is only based on the local information of the particles to accurately identify a contour. Particles search for the contour of an object and then traverse alongside using their known information about positions in- and out-side of the object. Our experiments show that the proposed PSCS algorithm can deliver comparable results as the state-of-the-art.


2007 ◽  
Vol 07 (03) ◽  
pp. L209-L214 ◽  
Author(s):  
JUSSI M. KUMPULA ◽  
JARI SARAMÄKI ◽  
KIMMO KASKI ◽  
JÁNOS KERTÉSZ

Detecting community structure in real-world networks is a challenging problem. Recently, it has been shown that the resolution of methods based on optimizing a modularity measure or a corresponding energy is limited; communities with sizes below some threshold remain unresolved. One possibility to go around this problem is to vary the threshold by using a tuning parameter, and investigate the community structure at variable resolutions. Here, we analyze the resolution limit and multiresolution behavior for two different methods: a q-state Potts method proposed by Reichard and Bornholdt, and a recent multiresolution method by Arenas, Fernández, and Gómez. These methods are studied analytically, and applied to three test networks using simulated annealing.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Kun Deng ◽  
Jianpei Zhang ◽  
Jing Yang

Since traditional mobile recommendation systems have difficulty in acquiring complete and accurate user information in mobile networks, the accuracy of recommendation is not high. In order to solve this problem, this paper proposes a novel mobile recommendation algorithm based on link community detection (MRLD). MRLD executes link label diffusion algorithm and maximal extended modularity (EQ) of greedy search to obtain the link community structure, and overlapping nodes belonging analysis (ONBA) is adopted to adjust the overlapping nodes in order to get the more accurate community structure. MRLD is tested on both synthetic and real-world networks, and the experimental results show that our approach is valid and feasible.


2008 ◽  
Vol 8 (5-6) ◽  
pp. 545-580 ◽  
Author(s):  
WOLFGANG FABER ◽  
GERALD PFEIFER ◽  
NICOLA LEONE ◽  
TINA DELL'ARMI ◽  
GIUSEPPE IELPA

AbstractDisjunctive logic programming (DLP) is a very expressive formalism. It allows for expressing every property of finite structures that is decidable in the complexity class ΣP2(=NPNP). Despite this high expressiveness, there are some simple properties, often arising in real-world applications, which cannot be encoded in a simple and natural manner. Especially properties that require the use of arithmetic operators (like sum, times, or count) on a set or multiset of elements, which satisfy some conditions, cannot be naturally expressed in classic DLP. To overcome this deficiency, we extend DLP by aggregate functions in a conservative way. In particular, we avoid the introduction of constructs with disputed semantics, by requiring aggregates to be stratified. We formally define the semantics of the extended language (called ), and illustrate how it can be profitably used for representing knowledge. Furthermore, we analyze the computational complexity of , showing that the addition of aggregates does not bring a higher cost in that respect. Finally, we provide an implementation of in DLV—a state-of-the-art DLP system—and report on experiments which confirm the usefulness of the proposed extension also for the efficiency of computation.


2014 ◽  
Vol 28 (28) ◽  
pp. 1450199
Author(s):  
Shengze Hu ◽  
Zhenwen Wang

In the real world, a large amount of systems can be described by networks where nodes represent entities and edges the interconnections between them. Community structure in networks is one of the interesting properties revealed in the study of networks. Many methods have been developed to extract communities from networks using the generative models which give the probability of generating networks based on some assumption about the communities. However, many generative models require setting the number of communities in the network. The methods based on such models are lack of practicality, because the number of communities is unknown before determining the communities. In this paper, the Bayesian nonparametric method is used to develop a new community detection method. First, a generative model is built to give the probability of generating the network and its communities. Next, the model parameters and the number of communities are calculated by fitting the model to the actual network. Finally, the communities in the network can be determined using the model parameters. In the experiments, we apply the proposed method to the synthetic and real-world networks, comparing with some other community detection methods. The experimental results show that the proposed method is efficient to detect communities in networks.


Author(s):  
Gaode Chen ◽  
Xinghua Zhang ◽  
Yanyan Zhao ◽  
Cong Xue ◽  
Ji Xiang

Sequential recommendation systems alleviate the problem of information overload, and have attracted increasing attention in the literature. Most prior works usually obtain an overall representation based on the user’s behavior sequence, which can not sufficiently reflect the multiple interests of the user. To this end, we propose a novel method called PIMI to mitigate this issue. PIMI can model the user’s multi-interest representation effectively by considering both the periodicity and interactivity in the item sequence. Specifically, we design a periodicity-aware module to utilize the time interval information between user’s behaviors. Meanwhile, an ingenious graph is proposed to enhance the interactivity between items in user’s behavior sequence, which can capture both global and local item features. Finally, a multi-interest extraction module is applied to describe user’s multiple interests based on the obtained item representation. Extensive experiments on two real-world datasets Amazon and Taobao show that PIMI outperforms state-of-the-art methods consistently.


Sign in / Sign up

Export Citation Format

Share Document