Community detection by enhancing community structure in bipartite networks

2019 ◽  
Vol 33 (07) ◽  
pp. 1950076 ◽  
Author(s):  
Wenjie Zhou ◽  
Xingyuan Wang ◽  
Chuan Zhang ◽  
Rui Li ◽  
Chunpeng Wang

Community detection is one of the primary tools to discover useful information that is hidden in complex networks. Some community detection algorithms for bipartite networks have been proposed from various viewpoints. However, the performance of these algorithms deteriorates when the community structure becomes unclear. Enhancing community structure remains a nontrivial task. In this paper, we propose a community detection algorithm, called ECD, that enhances community structure in bipartite networks. In the proposed ECD, the topology of a network is modified by reducing unnecessary edges that are connected to neighboring low-weight communities. Therefore, an ambiguous community structure is converted into a structure that is much clearer than the original structure. The experimental results on both artificial and real-world networks verify the accuracy and reliability of our algorithm. Compared with existing community detection algorithms using state-of-the-art methods, our algorithm has better performance.

2015 ◽  
Vol 29 (13) ◽  
pp. 1550078 ◽  
Author(s):  
Mingwei Leng ◽  
Liang Huang ◽  
Longjie Li ◽  
Hanhai Zhou ◽  
Jianjun Cheng ◽  
...  

Semisupervised community detection algorithms use prior knowledge to improve the performance of discovering the community structure of a complex network. However, getting those prior knowledge is quite expensive and time consuming in many real-world applications. This paper proposes an active semisupervised community detection algorithm based on the similarities between nodes. First, it transforms a given complex network into a weighted directed network based on the proposed asymmetric similarity method, some informative nodes are selected to be the labeled nodes by using an active mechanism. Second, the proposed algorithm discovers the community structure of a complex network by propagating the community labels of labeled nodes to their neighbors based on the similarity between a node and a community. Finally, the performance of the proposed algorithm is evaluated with three real networks and one synthetic network and the experimental results show that the proposed method has a better performance compared with some other community detection algorithms.


2013 ◽  
Vol 462-463 ◽  
pp. 458-461
Author(s):  
Jian Jun Cheng ◽  
Peng Fei Wang ◽  
Qi Bin Zhang ◽  
Zheng Quan Zhang ◽  
Ming Wei Leng ◽  
...  

This paper proposes an algorithm called DDSCDA, which is based on the concepts of the node degree difference and the node similarity. In the algorithm, we iteratively extract the node from the network with larger degree and certified the node as a kernel node, then take the kernel node as the founder or initiator of a community to attract its neighbors to join in that community; by doing so, we obtain a partition corresponding to a coarse-grained community structure of the network. Finally taken the coarse-grained community as a starting point, we use the strategy of LPA to propagate labels through the network further. At the end of the algorithm, we obtain the final community structure. We compared the performance with classical community detection algorithms such as LPA, LPAm, FastQ, etc., the experimental results have manifested that our proposal is a feasible algorithm, can extract higher quality communities from the network, and outperforms the previous algorithms significantly.


2021 ◽  
Vol 13 (4) ◽  
pp. 89
Author(s):  
Yubo Peng ◽  
Bofeng Zhang ◽  
Furong Chang

Community detection plays an essential role in understanding network topology and mining underlying information. A bipartite network is a complex network with more important authenticity and applicability than a one-mode network in the real world. There are many communities in the network that present natural overlapping structures in the real world. However, most of the research focuses on detecting non-overlapping community structures in the bipartite network, and the resolution of the existing evaluation function for the community structure’s merits are limited. So, we propose a novel function for community detection and evaluation of the bipartite network, called community density D. And based on community density, a bipartite network community detection algorithm DSNE (Density Sub-community Node-pair Extraction) is proposed, which is effective for overlapping community detection from a micro point of view. The experiments based on artificially-generated networks and real-world networks show that the DSNE algorithm is superior to some existing excellent algorithms; in comparison, the community density (D) is better than the bipartite network’s modularity.


2018 ◽  
Vol 32 (27) ◽  
pp. 1850330
Author(s):  
Guolin Wu ◽  
Changgui Gu ◽  
Lu Qiu ◽  
Huijie Yang

Identifying community structures in bipartite networks is a popular topic. People usually focus on one of two modes in bipartite networks when uncovering their community structures. According to this understanding, we design a community detection algorithm based on preferred mode in bipartite networks. This algorithm can select corresponding preferred mode according to specific application scenario and effectively extract community information in bipartite networks. The trials in artificial and real-world networks show that the algorithm based on preferred mode has better performances in both small size of bipartite networks and large size of bipartite networks.


2019 ◽  
Vol 30 (04) ◽  
pp. 1950021
Author(s):  
Jinfang Sheng ◽  
Kai Wang ◽  
Zejun Sun ◽  
Jie Hu ◽  
Bin Wang ◽  
...  

In recent years, community detection has gradually become a hot topic in the complex network data mining field. The research of community detection is helpful not only to understand network topology structure but also to explore network hiding function. In this paper, we improve FluidC which is a novel community detection algorithm based on fluid propagation, by ameliorating the quality of seed set based on positive feedback and determining the node update order. We first summarize the shortcomings of FluidC and analyze the reasons result in these drawbacks. Then, we took some effective measures to overcome them and proposed an efficient community detection algorithm, called FluidC+. Finally, experiments on the generated network and real-world network show that our method not only greatly improves the performance of the original algorithm FluidC but also is better than many state-of-the-art algorithms, especially in the performance on real-world network with ground truth.


2020 ◽  
Vol 8 (S1) ◽  
pp. S145-S163 ◽  
Author(s):  
Tristan J. B. Cann ◽  
Iain S. Weaver ◽  
Hywel T. P. Williams

AbstractBipartite networks represent pairwise relationships between nodes belonging to two distinct classes. While established methods exist for analyzing unipartite networks, those for bipartite network analysis are somewhat obscure and relatively less developed. Community detection in such instances is frequently approached by first projecting the network onto a unipartite network, a method where edges between node classes are encoded as edges within one class. Here we test seven different projection schemes by assessing the performance of community detection on both: (i) a real-world dataset from social media and (ii) an ensemble of artificial networks with prescribed community structure. A number of performance and accuracy issues become apparent from the experimental findings, especially in the case of long-tailed degree distributions. Of the methods tested, the “hyperbolic” projection scheme alleviates most of these difficulties and is thus the most robust scheme of those tested. We conclude that any interpretation of community detection algorithm performance on projected networks must be done with care as certain network configurations require strong community preference for the bipartite structure to be reflected in the unipartite communities. Our results have implications for the analysis of detected community structure in projected unipartite networks.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 680
Author(s):  
Hanyang Lin ◽  
Yongzhao Zhan ◽  
Zizheng Zhao ◽  
Yuzhong Chen ◽  
Chen Dong

There is a wealth of information in real-world social networks. In addition to the topology information, the vertices or edges of a social network often have attributes, with many of the overlapping vertices belonging to several communities simultaneously. It is challenging to fully utilize the additional attribute information to detect overlapping communities. In this paper, we first propose an overlapping community detection algorithm based on an augmented attribute graph. An improved weight adjustment strategy for attributes is embedded in the algorithm to help detect overlapping communities more accurately. Second, we enhance the algorithm to automatically determine the number of communities by a node-density-based fuzzy k-medoids process. Extensive experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively detect overlapping communities with fewer parameters compared to the baseline methods.


2021 ◽  
pp. 1-12
Author(s):  
JinFang Sheng ◽  
Huaiyu Zuo ◽  
Bin Wang ◽  
Qiong Li

 In a complex network system, the structure of the network is an extremely important element for the analysis of the system, and the study of community detection algorithms is key to exploring the structure of the complex network. Traditional community detection algorithms would represent the network using an adjacency matrix based on observations, which may contain redundant information or noise that interferes with the detection results. In this paper, we propose a community detection algorithm based on density clustering. In order to improve the performance of density clustering, we consider an algorithmic framework for learning the continuous representation of network nodes in a low-dimensional space. The network structure is effectively preserved through network embedding, and density clustering is applied in the embedded low-dimensional space to compute the similarity of nodes in the network, which in turn reveals the implied structure in a given network. Experiments show that the algorithm has superior performance compared to other advanced community detection algorithms for real-world networks in multiple domains as well as synthetic networks, especially when the network data chaos is high.


2021 ◽  
Author(s):  
Oksana Vertsimakha ◽  
Igor Dzeverin

AbstractModularity and modular structures can be recognized at various levels of biological organization and in various domains of studies. Recently, algorithms based on network analysis came into focus. And while such a framework is a powerful tool in studying modular structure, those methods usually pose a problem of assessing statistical support for the obtained modular structures. One of the widely applied methods is the leading eigenvector, or Newman’s spectral community detection algorithm. We conduct a brief overview of the method, including a comparison with some other community detection algorithms and explore a possible fine-tuning procedure. Finally, we propose an adapted bootstrap-based procedure based on Shimodaira’s multiscale bootstrap algorithm to derive approximately unbiased p-values for the module partitions of observations datasets. The proposed procedure also gives a lot of freedom to the researcher in constructing the network construction from the raw numeric data, and can be applied to various types of data and used in diverse problems concerning modular structure. We provide an R language code for all the calculations and the visualization of the obtained results for the researchers interested in using the procedure.


2020 ◽  
pp. 2150036
Author(s):  
Jinfang Sheng ◽  
Qiong Li ◽  
Bin Wang ◽  
Wanghao Guan ◽  
Jinying Dai ◽  
...  

Social networks are made up of members in society and the social relationships established by the interaction between members. Community structure is an essential attribute of social networks. The question arises that how can we discover the community structure in the network to gain a deep understanding of its underlying structure and mine information from it? In this paper, we introduce a novel community detection algorithm NTCD (Community Detection based on Node Trust). This is a stable community detection algorithm that does not require any parameters settings and has nearly linear time complexity. NTCD determines the community ownership of a node by studying the relationship between the node and its neighbor communities. This relationship is called Node Trust, representing the possibility that the node is in the current community. Node Trust is also a quality function, which is used for community detection by seeking maximum. Experiments on real and synthetic networks show that our algorithm has high accuracy in most data sets and stable community division results. Additionally, through experiments on different types of synthetic networks, we can conclude that our algorithm has good robustness.


Sign in / Sign up

Export Citation Format

Share Document