scholarly journals Design and Evaluation of Colon Targeted Dosage Form Containing Mesalazine Using pH Dependent Polymers

Author(s):  
MD. Rawoof ◽  
K. Rajnarayana ◽  
M. Ajitha

Colonic drug delivery has gained importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon like Crohn’s disease, ulcerative colitis and irritable bowel syndrome but also for the potential it holds for the systemic delivery of proteins and therapeutic peptides. The aim of the study was to develop colon targeted tablets of Mesalazine by wet granulation method using 33 response surface method with design of experiment software and HPMC K4M, Eudragit RL100, Ethyl cellulose and PVP K-30 used as pH dependent polymers. All the formulations (F1 to F27) were evaluated for the physicochemical parameters and were subjected to in vitro drug release studies. The amount of Mesalazine released from tablets at different time intervals was estimated by UV spectrophotometer. The formulation F26 released 98.16% of Mesalazine after 24 h. The results of the study showed that formulation F26 is the best formulation based on the evaluation parameters which provides targeting of Mesalazine for local action in the colon owing to its minimal release of the drug in the first 4 h. The pH dependent tablet system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Mesalazine for the treatment of disease at colon region.

Author(s):  
Rawoof MD ◽  
Rajnarayana K ◽  
Ajitha M

The main objective of the present study was to develop colon-targeted tablets of mesalazine by wet granulation method using 33 Response surface method with design of experiment software and HPMC K4M, Eudragit RL100, Ethyl cellulose and PVP K-30 used as pH dependent polymers. All the formulations (F1 to F27) were evaluated for the physicochemical parameters and were subjected to in vitro drug release studies. The amount of Mesalazine released from tablets at different time intervals was estimated by UV spectrophotometer. The formulation F26 released 98.16 % of mesalazine after 24 h, whereas marketed product drug release was 92.02 ± 2.15 after  24 h. From in vivo bioavailability studies, after oral administration of colon targeted tablet containing 400 mg mesalazine, the Cmax, Tmax, and AUC0–∞ of optimized formulation and marketed product was found to be 683.21 ± 0.03 ng/mL, 6.01 ± 0.04 h, 4150.12 ± 5.12 ng*h/mL and 445.34 ± 3.22 ng/mL, 4.00 ± 0.01 h, 3457.18 ± 5.32 ng*h/mL respectively. Cmax, Tmax and AUC values of optimized formulation were found to be significantly higher than of marketed product. The pH dependent tablet system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of mesalazine for the treatment of disease at colon region.


2020 ◽  
Vol 11 (2) ◽  
pp. 1807-1813
Author(s):  
Naga Sujan M ◽  
Kunal K Mehta ◽  
Amit B Patil ◽  
Anusha Vajhala

The present study is aimed to formulate, characterization, and evaluate oral immediate-release tablets of Ethosuximide. It is employed as an anti-epileptic agent used in the treatment of epilepsy, in all the age groups who were≥ 1 year. The dosage form is formulated by directly compressing the blend and granulating the powder blend by wet granulation methods. The optimized formulation is achieved by the trial and error method by changing the concentration of lactose monohydrate and di-basic calcium phosphate dehydrate as diluents, sodium starch glycolate as Super-dis-integrant, rice Starch as an intra-granular binder, hydroxypropyl cellulose as binder talc as a lubricant. Evaluation parameters such as micrometric properties, disintegration time along with in-vitro drug release studies were performed for characterizing the dosage form. In-vitro drug release studies were carried out using 0.1 N HCl as dissolution media with 75 rpm and temperature of 370C ± 50C by employing USP apparatus II (Paddle type). Estimation of the % drug release of the tablet was carried out using the UV method. The prepared formulation and the marketed formulation were tested for the in-vitro drug release profile and the prepared formulation was compared with the marketed formulation. All the evaluated result was found to be within the specifications. Therefore, from the obtained evaluation results F6 trail was selected as the best formulation.


Author(s):  
RAWOOF MD ◽  
RAJNARAYANA K ◽  
AJITHA M

Objective: The research is designed at formulating and evaluating pH-sensitive rifaximin colon-targeted tablets for targeted action in proximal colon. Method: The colon-targeted tablets are done by granulation of three levels of polymers such as Eudragit L30D, Carbopol 974P, and ethyl cellulose. The evaluation parameters such as swelling studies, drug dissolution, in vitro drug release studies, stability, and the Fourier transform infrared studies carried out for optimized formulations. Results: Physicochemical parameters of all the 27 formulations (RF1-RF27) evaluated and RF21 is chosen for further investigation based on weight variation, hardness, drug content, and swelling index. The in vitro drug release studies indicate that the optimized formulation RF21 released 98.75% drug within 24 h. The stability studies indicate that the formulation is stable. Conclusion: An effective and stable pH-dependent rifaximin colon-targeted tablet formulated for the targeted treatment of bowel syndrome.


Author(s):  
Neeraj Agrawal ◽  
M.J. Chandrasekar ◽  
U.V. Sara ◽  
Rohini A.

A macromolecular prodrug of didanosine (ddI) for oral administration was synthesized and evaluated for in-vitro drug release profile. Didanosine was first coupled to 2-hydroxy ethyl methacrylate (HEMA) through a succinic spacer to form HEMA-Suc-ddI monomeric conjugate which was subsequently polymerized to yield Poly(HEMA-Suc-ddI) conjugate. The structures of the synthesized compounds were characterized by FT-IR, Mass and 1H-NMR spectroscopy. The prodrug was subjected for in-vitro drug release studies in buffers of pH 1.2 and 7.4 mimicking the upper and lower GIT. The results showed that the drug release from the polymeric backbone takes place in a sustained manner over a period of 24 h and the amount of drug released was comparatively higher at pH 7.4 indicating that the drug release takes place predominantly at the alkaline environment of the lower GIT rather than at the acidic environment of the upper GIT. This pH dependent sustained drug release behavior of the prodrug may be capable of reducing the dose limiting toxicities by maintaining the plasma drug level within the therapeutic range and increasing t1/2 of ddI. Moreover, the bioavailability of the drug should be improved as the prodrug releases ddI predominantly in the alkaline environment which will reduce the degradation of ddI in the stomach acid.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Charu Bharti ◽  
Upendra Nagaich ◽  
Jaya Pandey ◽  
Suman Jain ◽  
Neha Jain

Abstract Background The current investigation is focused on the development and characterization of Eudragit S100 coated nitazoxanide-loaded microbeads as colon-targeted system utilizing central composite design (CCD) and desirability function. The study initiated with the selection of a BCS class II drug nitazoxanide and its preformulation screening with excipients, selection of polymer and identification of concentration for CCD, selection of optimized formulation based on desirability function, and in vitro release studies in simulated gastric and colonic media and stability studies. A two-factor, three-level CCD was employed with two independent variables, i.e. X1 (chitosan % w/v) and X2 (sodium tripolyphosphate % w/v), and three dependent variables, i.e. Y1 (particle size in micrometres), Y2 (percentage yield) and Y3 (percent entrapment efficiency), were chosen. Additionally, surface morphology, mucoadhesion and in vitro drug release studies were also conducted. Result Chitosan concentration showing maximum entrapment and optimum particle size was selected to formulate chitosan beads. The polynomial equation and model graphs obtained from the Design-Expert were utilized to examine the effect of independent variables on responses. The effect of formulation composition was found to be significant (p ˂ 0.05). Based on the desirability function, the optimized formulation was found to have 910.14 μm ± 1.03 particle size, 91.84% ± 0.64 percentage yield and 84.75% ± 0.38 entrapment efficiency with a desirability of 0.961. Furthermore, the formulations were characterized for in vitro drug release in simulated colonic media (2% rat caecal content) and have shown a sustained release of ∼ 92% up to 24 h as compared to in vitro release in simulated gastric fluid. Conclusion The possibility of formulation in enhancing percentage yield and entrapment efficiency of nitazoxanide and the utilization of CCD helps to effectively integrate nitazoxanide microbeads into a potential pharmaceutical dosage form for sustained release.


Author(s):  
Sushma Kamble

Abstract: The objective of present study was to formulate and evaluate the tablets for piles with different combination of herbal drugs. Material and Method: The tablet for piles containing lactose and mannitol as diluent and containing natural drugs like naagdon which was prepared by wet granulation method. The wet and compressed formulations were subject to several evaluation parameters like appearance, thickness, weight variation, hardness and friability. Results: The results of all evaluation parameters of piles tablet were within the acceptable limit. Pre-compression studies of piles tablet show satisfactory results. The thickness, hardness, weight variation, and friability of pilestablet were found to in acceptable range. The in-vitro drug release of eugenol from optimised for treatment piles formulation was found to be 90.23%. Significant results were obtained from present study. Discussion: The finding of current investigation clearly found that the health promotion of the body could be done by piles


2021 ◽  
Vol 4 (2) ◽  
pp. 99-109
Author(s):  
Priyanka Singh ◽  
Amit Kumar Shrivastava ◽  
Sachin Kumar ◽  
Manish Dhar Dwivedi

This study aimed to improve the dissolution rate of aceclofenac and release the drug in a controlled manner over a period of 24 hours. Matrix tablets were prepared by direct compression method, using hydrophilic polymers (HPMC/guar gum). Matrix tablets were prepared by wet granulation method using different hydrophilic polymers (HPMC/guar gum). Tablets were evaluated for in vitro drug release profile in phosphate buffer with pH 6.8 (without enzymes). The thickness and hardness of prepared tablets were 3.23 ± 0.035 to 3.28 ± 0.008 mm and 3.26 ± 0.115 to 3.60 ± 0.200 kg/cm2, respectively. The friability was within the acceptable limits of pharmacopoeial specifications (0.31 to 0.71%), which indicates the good mechanical strength of the tablets. Drug release was retarded with an increase in polymer concentration due to the gelling property of polymers. The in vitro drug release from the proposed system was best explained by Higuchi’s model, indicating that drug release from tablets displayed a diffusion-controlled mechanism. The results clearly indicate that guar gum could be a potential hydrophilic carrier in developing oral controlled drug delivery systems. Based on the study results, formulations F8 was selected as the best formulation.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 235-239
Author(s):  
NILESH M MAHAJAN ◽  
Kalyanee Wanaskar ◽  
Yogesh Bhutada ◽  
Raju Thenge ◽  
Vaibhav Adhao

The aim of present study is to formulate and evaluate extended release matrix tablet of Nateglinide by direct compression method using different polymer like HPMC K4 and HPMC K15. Matrix tablet of nateglidine were prepared in combination with the polymer HPMC K4, HPMC K15, along with the excipients and the formulations were evaluated for tablet properties and in vitro drug release studies. Nateglinide matrix tablet prepared by using polymer such as HPMC K4 and HPMC K15,  it was found that HPMC K15 having higher viscosity as compare to HPMC K4 therefore different concentration of polymer were studied to extend the drug release up to 12 h. The tablets of Nateglinide prepared by direct compression had acceptable physical characteristics and satisfactory drug release. The study demonstrated that as far as the formulations were concerned, the selected polymers proved to have an acceptable flexibility in terms of in-vitro release profile. In present the study the percent drug release for optimize batch was found to 94.62%.  Hence it can be conclude that Nateglinide extended release matrix tablet can prepared by using HPMC. The swollen tablet also maintains its physical integrity during the drug release study Keywords: Tablet, in-vitro drug release, Nateglinide, HPMC


Sign in / Sign up

Export Citation Format

Share Document