scholarly journals Molecular Classification of the Earthworm Aporrectodea trapezoids and the Effect of Sodium Nitroprusside and Norepinephrine on the Contractility of Crop and Gizzard Smooth Muscle

2021 ◽  
Vol 10 (2) ◽  
pp. 220-226
Author(s):  
Omar A.M. Al-Habib ◽  
Nazik M.S. Othman

Background: Earthworms are considered as one of the ecologically important invertebrates with highly cryptic genetic diversity. Since the morphological methods of classification are unprecise, it is necessary to classify the species depending on molecular bases using PCR techniques. In addition, studying the effect of some agonists such as Sodium nitroprusside (SNP) and Norepinephrine (NE) on the smooth muscle of earthworm is yet poorly studied.

Author(s):  
Antonio Pico ◽  
Laura Sanchez-Tejada ◽  
Ruth Sanchez-Ortiga ◽  
Rosa Camara ◽  
Cristina Lamas ◽  
...  

Author(s):  
Rodrigo Madurga ◽  
Noemí García-Romero ◽  
Beatriz Jiménez ◽  
Ana Collazo ◽  
Francisco Pérez-Rodríguez ◽  
...  

Abstract Molecular classification of glioblastoma has enabled a deeper understanding of the disease. The four-subtype model (including Proneural, Classical, Mesenchymal and Neural) has been replaced by a model that discards the Neural subtype, found to be associated with samples with a high content of normal tissue. These samples can be misclassified preventing biological and clinical insights into the different tumor subtypes from coming to light. In this work, we present a model that tackles both the molecular classification of samples and discrimination of those with a high content of normal cells. We performed a transcriptomic in silico analysis on glioblastoma (GBM) samples (n = 810) and tested different criteria to optimize the number of genes needed for molecular classification. We used gene expression of normal brain samples (n = 555) to design an additional gene signature to detect samples with a high normal tissue content. Microdissection samples of different structures within GBM (n = 122) have been used to validate the final model. Finally, the model was tested in a cohort of 43 patients and confirmed by histology. Based on the expression of 20 genes, our model is able to discriminate samples with a high content of normal tissue and to classify the remaining ones. We have shown that taking into consideration normal cells can prevent errors in the classification and the subsequent misinterpretation of the results. Moreover, considering only samples with a low content of normal cells, we found an association between the complexity of the samples and survival for the three molecular subtypes.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Gédéon Prince Manouana ◽  
Paul Alvyn Nguema-Moure ◽  
Mirabeau Mbong Ngwese ◽  
C.-Thomas Bock ◽  
Peter G. Kremsner ◽  
...  

Enteric viruses are the leading cause of diarrhea in children globally. Identifying viral agents and understanding their genetic diversity could help to develop effective preventive measures. This study aimed to determine the detection rate and genetic diversity of four enteric viruses in Gabonese children aged below five years. Stool samples from children <5 years with (n = 177) and without (n = 67) diarrhea were collected from April 2018 to November 2019. Norovirus, astrovirus, sapovirus, and aichivirus A were identified using PCR techniques followed by sequencing and phylogenetic analyses. At least one viral agent was identified in 23.2% and 14.9% of the symptomatic and asymptomatic participants, respectively. Norovirus (14.7%) and astrovirus (7.3%) were the most prevalent in children with diarrhea, whereas in the healthy group norovirus (9%) followed by the first reported aichivirus A in Gabon (6%) were predominant. The predominant norovirus genogroup was GII, consisting mostly of genotype GII.P31-GII.4 Sydney. Phylogenetic analysis of the 3CD region of the aichivirus A genome revealed the presence of two genotypes (A and C) in the study cohort. Astrovirus and sapovirus showed a high diversity, with five different astrovirus genotypes and four sapovirus genotypes, respectively. Our findings give new insights into the circulation and genetic diversity of enteric viruses in Gabonese children.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 733
Author(s):  
Nobutaka Ebata ◽  
Masashi Fujita ◽  
Shota Sasagawa ◽  
Kazuhiro Maejima ◽  
Yuki Okawa ◽  
...  

Gallbladder cancer (GBC), a rare but lethal disease, is often diagnosed at advanced stages. So far, molecular characterization of GBC is insufficient, and a comprehensive molecular portrait is warranted to uncover new targets and classify GBC. We performed a transcriptome analysis of both coding and non-coding RNAs from 36 GBC fresh-frozen samples. The results were integrated with those of comprehensive mutation profiling based on whole-genome or exome sequencing. The clustering analysis of RNA-seq data facilitated the classification of GBCs into two subclasses, characterized by high or low expression levels of TME (tumor microenvironment) genes. A correlation was observed between gene expression and pathological immunostaining. TME-rich tumors showed significantly poor prognosis and higher recurrence rate than TME-poor tumors. TME-rich tumors showed overexpression of genes involved in epithelial-to-mesenchymal transition (EMT) and inflammation or immune suppression, which was validated by immunostaining. One non-coding RNA, miR125B1, exhibited elevated expression in stroma-rich tumors, and miR125B1 knockout in GBC cell lines decreased its invasion ability and altered the EMT pathway. Mutation profiles revealed TP53 (47%) as the most commonly mutated gene, followed by ELF3 (13%) and ARID1A (11%). Mutations of ARID1A, ERBB3, and the genes related to the TGF-β signaling pathway were enriched in TME-rich tumors. This comprehensive analysis demonstrated that TME, EMT, and TGF-β pathway alterations are the main drivers of GBC and provides a new classification of GBCs that may be useful for therapeutic decision-making.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 134
Author(s):  
Loai Abdallah ◽  
Murad Badarna ◽  
Waleed Khalifa ◽  
Malik Yousef

In the computational biology community there are many biological cases that are considered as multi-one-class classification problems. Examples include the classification of multiple tumor types, protein fold recognition and the molecular classification of multiple cancer types. In all of these cases the real world appropriately characterized negative cases or outliers are impractical to achieve and the positive cases might consist of different clusters, which in turn might lead to accuracy degradation. In this paper we present a novel algorithm named MultiKOC multi-one-class classifiers based K-means to deal with this problem. The main idea is to execute a clustering algorithm over the positive samples to capture the hidden subdata of the given positive data, and then building up a one-class classifier for every cluster member’s examples separately: in other word, train the OC classifier on each piece of subdata. For a given new sample, the generated classifiers are applied. If it is rejected by all of those classifiers, the given sample is considered as a negative sample, otherwise it is a positive sample. The results of MultiKOC are compared with the traditional one-class, multi-one-class, ensemble one-classes and two-class methods, yielding a significant improvement over the one-class and like the two-class performance.


Sign in / Sign up

Export Citation Format

Share Document