scholarly journals Genetic Diversity of Enteric Viruses in Children under Five Years Old in Gabon

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Gédéon Prince Manouana ◽  
Paul Alvyn Nguema-Moure ◽  
Mirabeau Mbong Ngwese ◽  
C.-Thomas Bock ◽  
Peter G. Kremsner ◽  
...  

Enteric viruses are the leading cause of diarrhea in children globally. Identifying viral agents and understanding their genetic diversity could help to develop effective preventive measures. This study aimed to determine the detection rate and genetic diversity of four enteric viruses in Gabonese children aged below five years. Stool samples from children <5 years with (n = 177) and without (n = 67) diarrhea were collected from April 2018 to November 2019. Norovirus, astrovirus, sapovirus, and aichivirus A were identified using PCR techniques followed by sequencing and phylogenetic analyses. At least one viral agent was identified in 23.2% and 14.9% of the symptomatic and asymptomatic participants, respectively. Norovirus (14.7%) and astrovirus (7.3%) were the most prevalent in children with diarrhea, whereas in the healthy group norovirus (9%) followed by the first reported aichivirus A in Gabon (6%) were predominant. The predominant norovirus genogroup was GII, consisting mostly of genotype GII.P31-GII.4 Sydney. Phylogenetic analysis of the 3CD region of the aichivirus A genome revealed the presence of two genotypes (A and C) in the study cohort. Astrovirus and sapovirus showed a high diversity, with five different astrovirus genotypes and four sapovirus genotypes, respectively. Our findings give new insights into the circulation and genetic diversity of enteric viruses in Gabonese children.

Healthcare ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 9 ◽  
Author(s):  
Sarmila Tandukar ◽  
Jeevan Sherchand ◽  
Surendra Karki ◽  
Bikash Malla ◽  
Rajani Ghaju Shrestha ◽  
...  

Enteric viruses are highly contagious and a major cause of waterborne gastroenteritis in children younger than five years of age in developing world. This study examined the prevalence of enteric virus infection in children with gastroenteritis to identify risk factors for co-infections. In total, 107 stool samples were collected from patients with acute gastroenteritis along with samples of their household drinking water and other possible contamination sources, such as food and hand. The presence of major gastroenteritis-causing enteric virus species (group A rotaviruses, enteroviruses, adenoviruses, and noroviruses of genogroup I) in stool and water samples was examined using quantitative polymerase chain reaction. Among the 107 stool samples tested, 103 (96%) samples contained at least one of the four tested enteric viruses, and the combination of group A rotaviruses and enteroviruses was the most common co-infection (52%, n = 54/103). At least one viral agent was detected in 16 (16%) of 103 drinking water samples. Identical enteric viruses were detected in both the stool and water samples taken from the same patients in 13% of cases (n = 13/103). Group A rotaviruses were most frequently found in children suffering from acute diarrhea. No socio-demographic and clinical factors were associated with the risk of co-infection compared with mono-infection. These less commonly diagnosed viral etiological agents in hospitals are highly prevalent in patients with acute gastroenteritis.


2020 ◽  
Vol 18 (3) ◽  
pp. 210-218
Author(s):  
Guolong Yu ◽  
Yan Li ◽  
Xuhe Huang ◽  
Pingping Zhou ◽  
Jin Yan ◽  
...  

Background: HIV-1 CRF55_01B was first reported in 2013. At present, no report is available regarding this new clade’s polymorphisms in its functionally critical regions protease and reverse transcriptase. Objective: To identify the diversity difference in protease and reverse transcriptase between CRF55_01B and its parental clades CRF01_AE and subtype B; and to investigate CRF55_01B’s drug resistance mutations associated with the protease inhibition and reverse transcriptase inhibition. Methods: HIV-1 RNA was extracted from plasma derived from a MSM population. The reverse transcription and nested PCR amplification were performed following our in-house PCR procedure. Genotyping and drug resistant-associated mutations and polymorphisms were identified based on polygenetic analyses and the usage of the HIV Drug Resistance Database, respectively. Results: A total of 9.24 % of the identified CRF55_01B sequences bear the primary drug resistance. CRF55_01B contains polymorphisms I13I/V, G16E and E35D that differ from those in CRF01_AE. Among the 11 polymorphisms in the RT region, seven were statistically different from CRF01_AE’s. Another three polymorphisms, R211K (98.3%), F214L (98.3%), and V245A/E (98.3 %.), were identified in the RT region and they all were statistically different with that of the subtype B. The V179E/D mutation, responsible for 100% potential low-level drug resistance, was found in all CRF55_01B sequences. Lastly, the phylogenetic analyses demonstrated 18 distinct clusters that account for 35% of the samples. Conclusions: CRF55_01B’s pol has different genetic diversity comparing to its counterpart in CRF55_01B’s parental clades. CRF55_01B has a high primary drug resistance presence and the V179E/D mutation may confer more vulnerability to drug resistance.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 882
Author(s):  
Susanne Baertl ◽  
Corinna Pietsch ◽  
Melanie Maier ◽  
Mario Hönemann ◽  
Sandra Bergs ◽  
...  

Enteroviruses are associated with various diseases accompanied by rare but severe complications. In recent years, outbreaks of enterovirus D68 and enterovirus A71 associated with severe respiratory infections and neurological complications have been reported worldwide. Since information on molecular epidemiology in respiratory samples is still limited, the genetic diversity of enteroviruses was retrospectively analysed over a 4-year period (2013–2016) in respiratory samples from paediatric patients. Partial viral major capsid protein gene (VP1) sequences were determined for genotyping. Enteroviruses were detected in 255 (6.1%) of 4187 specimens. Phylogenetic analyses of 233 (91.4%) strains revealed 25 different genotypes distributed to Enterovirus A (39.1%), Enterovirus B (34.3%), and Enterovirus D (26.6%). The most frequently detected genotypes were enterovirus D68 (26.6%), coxsackievirus A6 (15.9%), and enterovirus A71 (7.3%). Enterovirus D68 detections were associated with lower respiratory tract infections and increased oxygen demand. Meningitis/encephalitis and other neurological symptoms were related to enterovirus A71, while coxsackievirus A6 was associated with upper respiratory diseases. Prematurity turned out as a potential risk factor for increased oxygen demand during enterovirus infections. The detailed analysis of epidemiological and clinical data contributes to the non-polio enterovirus surveillance in Europe and showed high and rapidly changing genetic diversity of circulating enteroviruses, including different enterovirus D68 variants.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 420
Author(s):  
María Eugenia Salgado Salomón ◽  
Carolina Barroetaveña ◽  
Tuula Niskanen ◽  
Kare Liimatainen ◽  
Matthew E. Smith ◽  
...  

This paper is a contribution to the current knowledge of taxonomy, ecology and distribution of South American Cortinarius (Pers.) Gray. Cortinarius is among the most widely distributed and species-rich basidiomycete genera occurring with South American Nothofagaceae and species are found in many distinct habitats, including shrublands and forests. Due to their ectomycorrhizal role, Cortinarius species are critical for nutrient cycling in forests, especially at higher latitudes. Some species have also been reported as edible fungi with high nutritional quality. Our aim is to unravel the taxonomy of selected Cortinarius belonging to phlegmacioid and myxotelamonioid species based on morphological and molecular data. After widely sampling Cortinarius specimens in Patagonian Nothofagaceae forests and comparing them to reference collections (including holotypes), we propose five new species of Cortinarius in this work. Phylogenetic analyses of concatenated rDNA ITS-LSU and RPB1 sequences failed to place these new species into known Cortinarius sections or lineages. These findings highlight our knowledge gaps regarding the fungal diversity of South American Nothofagaceae forests. Due to the high diversity of endemic Patagonian taxa, it is clear that the South American Cortinarius diversity needs to be discovered and described in order to understand the evolutionary history of Cortinarius on a global scale.


Author(s):  
Andrea Highfield ◽  
Angela Ward ◽  
Richard Pipe ◽  
Declan C. Schroeder

Abstract Twelve hyper-β carotene-producing strains of algae assigned to the genus Dunaliella salina have been isolated from various hypersaline environments in Israel, South Africa, Namibia and Spain. Intron-sizing of the SSU rDNA and phylogenetic analysis of these isolates were undertaken using four commonly employed markers for genotyping, LSU rDNA, ITS, rbcL and tufA and their application to the study of Dunaliella evaluated. Novel isolates have been identified and phylogenetic analyses have shown the need for clarification on the taxonomy of Dunaliella salina. We propose the division of D. salina into four sub-clades as defined by a robust phylogeny based on the concatenation of four genes. This study further demonstrates the considerable genetic diversity within D. salina and the potential of genetic analyses for aiding in the selection of prospective economically important strains.


Microbiology ◽  
2009 ◽  
Vol 155 (8) ◽  
pp. 2630-2640 ◽  
Author(s):  
J. T. Tambong ◽  
R. Xu ◽  
E. S. P. Bromfield

Intercistronic heterogeneity of the 16S–23S rRNA internal transcribed spacer regions (ITS1) was investigated in 29 strains of fluorescent pseudomonads isolated from subterranean seeds of Amphicarpa bracteata (hog peanut). PCR amplification of the ITS1 region generated one or two products from the strains. Sequence analysis of the amplified fragments revealed an ITS1 fragment of about 517 bp that contained genes for tRNAIle and tRNAAla in all 29 strains; an additional smaller ITS1 of 279 bp without tRNA features was detected in 15 of the strains. The length difference appeared to be due to deletions of several nucleotide blocks between the 70 bp and 359 bp positions of the alignment. The end of the deletions in the variant ITS1 type coincided with the start of antiterminator box A, which is homologous to box A of other bacteria. Phylogenetic analyses using the neighbour-joining algorithm revealed two major phylogenetic clusters, one for each of the ITS1 types. Using a single specific primer set and the DNA-intercalating dye SYBR Green I for real-time PCR and melting-curve analysis produced highly informative curves with one or two recognizable melting peaks that readily distinguished between the two ITS1 types in pure cultures. The assay was used to confirm the presence of the variant ITS1 type in the Pseudomonas community in total DNA from root-zone soil and seed coats of hog peanut. Heterogeneity of the ITS1 region between species has potential for studying molecular systematics and population genetics of the genus Pseudomonas, but the presence of non-identical rRNA operons within a genome may pose problems.


2006 ◽  
Vol 394 (3) ◽  
pp. 575-579 ◽  
Author(s):  
Sergey V. Novoselov ◽  
Deame Hua ◽  
Alexey V. Lobanov ◽  
Vadim N. Gladyshev

Sec (selenocysteine) is a rare amino acid in proteins. It is co-translationally inserted into proteins at UGA codons with the help of SECIS (Sec insertion sequence) elements. A full set of selenoproteins within a genome, known as the selenoproteome, is highly variable in different organisms. However, most of the known eukaryotic selenoproteins are represented in the mammalian selenoproteome. In addition, many of these selenoproteins have cysteine orthologues. Here, we describe a new selenoprotein, designated Fep15, which is distantly related to members of the 15 kDa selenoprotein (Sep15) family. Fep15 is absent in mammals, can be detected only in fish and is present in these organisms only in the selenoprotein form. In contrast with other members of the Sep15 family, which contain a putative active site composed of Sec and cysteine, Fep15 has only Sec. When transiently expressed in mammalian cells, Fep15 incorporated Sec in an SECIS- and SBP2 (SECIS-binding protein 2)-dependent manner and was targeted to the endoplasmic reticulum by its N-terminal signal peptide. Phylogenetic analyses of Sep15 family members suggest that Fep15 evolved by gene duplication.


Heredity ◽  
2021 ◽  
Author(s):  
Yael S. Rodger ◽  
Alexandra Pavlova ◽  
Steve Sinclair ◽  
Melinda Pickup ◽  
Paul Sunnucks

AbstractConservation management can be aided by knowledge of genetic diversity and evolutionary history, so that ecological and evolutionary processes can be preserved. The Button Wrinklewort daisy (Rutidosis leptorrhynchoides) was a common component of grassy ecosystems in south-eastern Australia. It is now endangered due to extensive habitat loss and the impacts of livestock grazing, and is currently restricted to a few small populations in two regions >500 km apart, one in Victoria, the other in the Australian Capital Territory and nearby New South Wales (ACT/NSW). Using a genome-wide SNP dataset, we assessed patterns of genetic structure and genetic differentiation of 12 natural diploid populations. We estimated intrapopulation genetic diversity to scope sources for genetic management. Bayesian clustering and principal coordinate analyses showed strong population genetic differentiation between the two regions, and substantial substructure within ACT/NSW. A coalescent tree-building approach implemented in SNAPP indicated evolutionary divergence between the two distant regions. Among the populations screened, the last two known remaining Victorian populations had the highest genetic diversity, despite having among the lowest recent census sizes. A maximum likelihood population tree method implemented in TreeMix suggested little or no recent gene flow except potentially between very close neighbours. Populations that were more genetically distinctive had lower genetic diversity, suggesting that drift in isolation is likely driving population differentiation though loss of diversity, hence re-establishing gene flow among them is desirable. These results provide background knowledge for evidence-based conservation and support genetic rescue within and between regions to elevate genetic diversity and alleviate inbreeding.


Author(s):  
Fatih Yılmaz ◽  
Havva Kaya ◽  
Mehmet Özdemir

Abstract Objective Gastroenteritis is a disease that affects all age groups, especially children, and causes high mortality and morbidity in all countries. The most common agents of acute gastroenteritis are viral agents. As a result, millions of diarrhea attacks and hospital admissions occur worldwide every year due to viral gastroenteritis. This study uses the multiplex polymerase chain reaction (PCR) method to investigate the viruses that are the causative agents of viral gastroenteritis in the pediatric patient group in Konya, Turkey. Methods Stool samples of 94 patients aged 0 to 18 years sent from Emergency clinics and Pediatric outpatient clinics, Meram Medical Faculty Hospital Pediatric clinics, Konya Necmettin Erbakan University to Medical Microbiology Laboratory with a diagnosis of gastroenteritis between February and December 2018 were included in the study. Stool samples were stored at –80°C until the time of the analysis. Deoxyribonucleic acid/ribonucleic acid isolation from stool samples was performed with EZ1 Virus Mini Kit v2.0 (Qiagen, Hilden, Germany) using an automatic extraction system (BioRobot EZ1 system, Qiagen). The presence of astrovirus, rotavirus, adenovirus, norovirus (GI, GII), and sapovirus agents was investigated by the multiplex PCR method (Fast Track Diagnostics, Luxembourg) viral gastroenteritis kit. Results Viral gastroenteritis agents were detected in 56.3% of the patients. One viral agent was detected in 47 (50%) of these patients and at least two viral agents in 6 (6.3%) of them. Norovirus GII was detected in 20 (21.2%) of the children included in the study, adenovirus in 13 (13.8%), rotavirus in 11 (12.8%), astrovirus in 11 (11.7%), sapovirus in 4 (4.2%), and norovirus GI in 1 (1.06%). When the distribution of viral agents was examined by months, the most number of agents were observed (21; 35%) in May, followed by April and June (12; 20%). Considering the distribution of the prevalence of the agents by age, it was seen to be mainly between 0 and 12 months (42%). Conclusion Considering that the most common viral agent in our region is norovirus GII, it will be useful to investigate the norovirus that is not routinely examined in children who are admitted to clinics with the complaint of gastroenteritis. It will be appropriate to examine routinely adenovirus, rotavirus, and norovirus in the laboratory, especially in children with diarrhea and vomiting in the winter and spring months.


2021 ◽  
Vol 22 (24) ◽  
pp. 13366
Author(s):  
Xuechun Wang ◽  
Nan Chao ◽  
Aijing Zhang ◽  
Jiaqi Kang ◽  
Xiangning Jiang ◽  
...  

Caffeoyl shikimate esterase (CSE) hydrolyzes caffeoyl shikimate into caffeate and shikimate in the phenylpropanoid pathway. In this study, we performed a systematic analysis of the CSE gene family and investigated the possible roles of CSE and CSE-like genes in Populus. We conducted a genome-wide analysis of the CSE gene family, including functional and phylogenetic analyses of CSE and CSE-like genes, using the poplar (Populus trichocarpa) genome. Eighteen CSE and CSE-like genes were identified in the Populus genome, and five phylogenetic groups were identified from phylogenetic analysis. CSEs in Group Ia, which were proposed as bona fide CSEs, have probably been lost in most monocots except Oryza sativa. Primary functional classification showed that PoptrCSE1 and PoptrCSE2 had putative function in lignin biosynthesis. In addition, PoptrCSE2, along with PoptrCSE12, might also respond to stress with a function in cell wall biosynthesis. Enzymatic assay of PoptoCSE1 (Populus tomentosa), -2 and -12 showed that PoptoCSE1 and -2 maintained CSE activity. PoptoCSE1 and 2 had similar biochemical properties, tissue expression patterns and subcellular localization. Most of the PoptrCSE-like genes are homologs of AtMAGL (monoacylglycerol lipase) genes in Arabidopsis and may function as MAG lipase in poplar. Our study provides a systematic understanding of this novel gene family and suggests the function of CSE in monolignol biosynthesis in Populus.


Sign in / Sign up

Export Citation Format

Share Document