OPPOSING FUNCTIONS FOR A PROTEIN KINASE: A JNK1 DEPENDENT SWITCH DETERMINES THE ONCOGENIC OR TUMOR SUPPRESSIVE ACTIVITY OF ILK INRHABDOMYOSARCOMA

2008 ◽  
Vol 31 (4) ◽  
pp. 9
Author(s):  
Adam D Durbin ◽  
Gino R Somers ◽  
Michael Forrester ◽  
Gregory E Hannigan ◽  
David Malkin

Background:The integrin-linked kinase (ILK) is a protein kinase involved in the regulation of pathogenic cancer cell behaviours, such as proliferation, survival and invasion. ILK appears to be pro-oncogenic in vitro and in vivo models of tumorigenesis. Rhabdomyosarcoma (RMS) is a primitive mesenchyme-derived tumor and is subclassified into primarily embryonal (ERMS) and alveolar (ARMS) variants. Patients who present with metastatic RMS tumors have a less than 20% chance of cure, suggesting a need to define novel targets for chemotherapeutic intervention. Methods: We used cell culture, murine xenografts and primary human tumors to examine ILK expression and functionality. RNAi and adenoviruses were used to knock down or over expressproteins, and SP600125 was used to inhibit JNK kinase activity. ERMS cells stablye xpressing PAX3-FOXO1A we regenerated using pcDNA3.1 with the full length PAX3-FOXO1A cDNA insert. Results: RNAi-mediated ablation of ILK induced stimulation of ERMS and inhibition of ARMS cell growth in vitro and in vivo. Overexpression of ILK, but not the ILK-R211A mutant reversed these effects. High-throughput screening of multiple tumor cell lines and mesenchymal progenitor cells demonstrated similar ILK anti-growth effects. Consistent with these results, clinical correlations made between ILK immunohistochemical staining intensity and patterns on an ERMS tumor tissue microarray revealed downregulation of ILK in stage III/IV primary tumors. Mechanistically, ILK silencing induced selective phosphorylation of the c-jun amino terminal kinase (JNK) and its target c-Jun in ERMS cells with attenuated phosphorylation in ARMS cells. ERMS cells express higher levels of JNK1 isoforms than ARMS cells. Introduction of the ARMS-associated PAX3-FOXO1A fusion gene into ERMS cells restored the oncogenic function of ILK and downregulated of JNK1. Coupling ILK siRNA with inhibition of the JNK-c-Jun signaling pathway in ERMS cells resulted in growth reductions and apoptotic induction. In contrast, coupling ILK knockdown with overexpression of JNK1 in ARMS cells resulted in growth and c-jun phosphorylation. Conclusion: In summary, these data suggest a model whereby the effect of ILK as an oncogene or tumor suppressor is determined by JNK1. Finally, this data suggests that ILK kinase inhibition may be warranted in ARMS tumors, and may be contraindicated in ERMS.

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3562
Author(s):  
Mitra Nair ◽  
Chelsea Bolyard ◽  
Tae Jin Lee ◽  
Balveen Kaur ◽  
Ji Young Yoo

Brain-specific angiogenesis inhibitor 1 (BAI1/ADGRB1) is an adhesion G protein-coupled receptor that has been found to play key roles in phagocytosis, inflammation, synaptogenesis, the inhibition of angiogenesis, and myoblast fusion. As the name suggests, it is primarily expressed in the brain, with a high expression in the normal adult and developing brain. Additionally, its expression is reduced in brain cancers, such as glioblastoma (GBM) and peripheral cancers, suggesting that BAI1 is a tumor suppressor gene. Several investigators have demonstrated that the restoration of BAI1 expression in cancer cells results in reduced tumor growth and angiogenesis. Its expression has also been shown to be inversely correlated with tumor progression, neovascularization, and peri-tumoral brain edema. One method of restoring BAI1 expression is by using oncolytic virus (OV) therapy, a strategy which has been tested in various tumor models. Oncolytic herpes simplex viruses engineered to express the secreted fragment of BAI1, called Vasculostatin (Vstat120), have shown potent anti-tumor and anti-angiogenic effects in multiple tumor models. Combining Vstat120-expressing oHSVs with other chemotherapeutic agents has also shown to increase the overall anti-tumor efficacy in both in vitro and in vivo models. In the current review, we describe the structure and function of BAI1 and summarize its application in the context of cancer treatment.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 702 ◽  
Author(s):  
Christian T. Stackhouse ◽  
James R. Rowland ◽  
Rachael S. Shevin ◽  
Raj Singh ◽  
G. Yancey Gillespie ◽  
...  

Accurate patient-derived models of cancer are needed for profiling the disease and for testing therapeutics. These models must not only be accurate, but also suitable for high-throughput screening and analysis. Here we compare two derivative cancer models, microtumors and spheroids, to the gold standard model of patient-derived orthotopic xenografts (PDX) in glioblastoma multiforme (GBM). To compare these models, we constructed a custom NanoString panel of 350 genes relevant to GBM biology. This custom assay includes 16 GBM-specific gene signatures including a novel GBM subtyping signature. We profiled 11 GBM-PDX with matched orthotopic cells, derived microtumors, and derived spheroids using the custom NanoString assay. In parallel, these derivative models underwent drug sensitivity screening. We found that expression of certain genes were dependent on the cancer model while others were model-independent. These model-independent genes can be used in profiling tumor-specific biology and in gauging therapeutic response. It remains to be seen whether or not cancer model-specific genes may be directly or indirectly, through changes to tumor microenvironment, manipulated to improve the concordance of in vitro derivative models with in vivo models yielding better prediction of therapeutic response.


2021 ◽  
Author(s):  
Julio Aguirre-Ghiso ◽  
Ana Rita Nobre ◽  
Erica Dalla ◽  
Jihong Yang ◽  
Xin Huang ◽  
...  

Abstract Increasing evidence shows that cancer cells can disseminate from early-evolved primary lesions much earlier than the classical metastasis models predicted. It is thought that a state of early disseminated cancer cell (early DCC) dormancy can precede genetic maturation of DCCs and metastasis initiation. Here we reveal at single cell resolution a previously unrecognized role of mesenchymal- and pluripotency-like programs in coordinating early cancer cell spread and a long-lived dormancy program in early DCCs. Using in vitro and in vivo models of invasion and metastasis, single cell RNA sequencing and human sample analysis, we provide unprecedented insight into how early DCC heterogeneity and plasticity control the timing of reactivation. We identify in early lesions and early DCCs the transcription factor ZFP281 as an inducer of mesenchymal- and primed pluripotency-like programs, which is absent in advanced primary tumors and overt metastasis. ZFP281 not only controls the early spread of cancer cells but also locks early DCCs in a prolonged dormancy state by preventing the acquisition of an epithelial-like proliferative program and consequent metastasis outgrowth. Thus, ZFP281-driven dormancy of early DCCs may be a rate-limiting step in metastatic progression functioning as a first barrier that DCCs must overcome to then undergo genetic maturation.


2018 ◽  
Vol 19 (11) ◽  
pp. 3473 ◽  
Author(s):  
Jenifer Trepiana ◽  
Iñaki Milton-Laskibar ◽  
Saioa Gómez-Zorita ◽  
Itziar Eseberri ◽  
Marcela González ◽  
...  

This review focuses on the role of 5′-activated protein kinase (AMPK) in the effects of resveratrol (RSV) and some RSV derivatives on hepatic steatosis. In vitro studies, performed in different hepatic cell models, have demonstrated that RSV is effective in preventing liver TG accumulation by activating AMPK, due to its phosphorylation. These preventive effects have been confirmed in studies conducted in animal models, such as mice and rats, by administering the phenolic compound at the same time as the diet which induces TG accumulation in liver. The literature also includes studies focused on other type of models, such as animals showing alcohol-induced steatosis or even steatosis induced by administering chemical products. In addition to the preventive effects of RSV on hepatic steatosis, other studies have demonstrated that it can alleviate previously developed liver steatosis, thus its role as a therapeutic tool has been proposed. The implication of AMPK in the delipidating effects of RSV in in vivo models has also been demonstrated.


2004 ◽  
Vol 166 (2) ◽  
pp. 261-272 ◽  
Author(s):  
Alex I. Chernyavsky ◽  
Juan Arredondo ◽  
Jürgen Wess ◽  
Evert Karlsson ◽  
Sergei A. Grando

To test the hypothesis that keratinocyte (KC) migration is modulated by distinct muscarinic acetylcholine (ACh) receptor subtypes, we inactivated signaling through specific receptors in in vitro and in vivo models of reepithelialization by subtype-selective antagonists, small interfering RNA, and gene knockout in mice. KC migration and wound reepithelialization were facilitated by M4 and inhibited by M3. Additional studies showed that M4 increases expression of “migratory” integrins α5β1, αVβ5, and αVβ6, whereas M3 up-regulates “sedentary” integrins α2β1 and α3β1. Inhibition of migration by M3 was mediated through Ca2+-dependent guanylyl cyclase–cyclic GMP–protein kinase G signaling pathway. The M4 effects resulted from inhibition of the inhibitory pathway involving the adenylyl cyclase–cyclic AMP–protein kinase A pathway. Both signaling pathways intersected at Rho, indicating that Rho kinase provides a common effector for M3 and M4 regulation of cell migration. These findings offer novel insights into the mechanisms of ACh-mediated modulation of KC migration and wound reepithelialization, and may aid the development of novel methods to promote wound healing.


1987 ◽  
Vol 7 (12) ◽  
pp. 4280-4289 ◽  
Author(s):  
A M Pendergast ◽  
J A Traugh ◽  
O N Witte

Viral transduction and chromosomal translocations of the c-abl gene result in the synthesis of abl proteins with structurally altered amino termini. These altered forms of the abl protein, but not the c-abl proteins, are detectably phosphorylated on tyrosine in vivo. In contrast, all forms of the abl protein are phosphorylated on serine following in vivo labeling with Pi. Treatment of NIH-3T3 cells with protein kinase C activators resulted in a four- to eightfold increase in the phosphorylation of murine c-abl due to modification of two serines on the c-abl protein. Purified protein kinase C phosphorylated all abl proteins at the same two sites. Both sites are precisely conserved in murine and human abl proteins. The sites on the abl proteins were found near the carboxy terminus. In contrast, for the epidermal growth factor receptor (T. Hunter, N. Ling, and J. A. Cooper, Nature [London] 311:480-483, 1984) and pp60src (K. L. Gould, J. R. Woodgett, J. A. Cooper, J. E. Buss, D. Shalloway, and T. Hunter, Cell 42:849-857, 1985), the sites of protein kinase C phosphorylation are amino-terminal to the kinase domain. The abl carboxy-terminal region is not necessary for the tyrosine kinase activity or transformation potential of the viral abl protein and may represent a regulatory domain. Using an in vitro immune complex kinase assay, we were not able to correlate reproducible changes in c-abl activity with phosphorylation by protein kinase C. However, the high degree of conservation of the phosphorylation sites for protein kinase C between human and mouse abl proteins suggests an important functional role.


2019 ◽  
Vol 25 (3) ◽  
pp. 265-276
Author(s):  
Zoe Weydert ◽  
Madhu Lal-Nag ◽  
Lesley Mathews-Greiner ◽  
Christoph Thiel ◽  
Henrik Cordes ◽  
...  

Three-dimensional (3D) cell culture models are thought to mimic the physiological and pharmacological properties of tissues in vivo more accurately than two-dimensional cultures on plastic dishes. For the development of cancer therapies, 3D spheroid models are being created to reflect the complex histology and physiology of primary tumors with the hopes that drug responses will be more similar to and as predictive as those obtained in vivo. The effect of additional cell types in tumors, such as stromal cells, and the resulting heterotypic cell–cell crosstalk can be investigated in these heterotypic 3D cell cultures. Here, a high-throughput screening-compatible drug testing platform based on 3D multicellular spheroid models is described that enables the parallel assessment of toxicity on stromal cells and efficacy on cancer cells by drug candidates. These heterotypic microtissue tumor models incorporate NIH3T3 fibroblasts as stromal cells that are engineered with a reporter gene encoding secreted NanoLUC luciferase. By tracking the NanoLUC signal in the media over time, a time-related measurement of the cytotoxic effects of drugs on stromal cells over the cancer cells was possible, thus enabling the identification of a therapeutic window. An in vitro therapeutic index parameter is proposed to help distinguish and classify those compounds with broad cytotoxic effects versus those that are more selective at targeting cancer cells.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Esmaeil Dehghan ◽  
Mohammad Goodarzi ◽  
Bahar Saremi ◽  
Rueyling Lin ◽  
Hamid Mirzaei

Abstract Therapeutic activation of mitochondrial function has been suggested as an effective strategy to combat aging. Hydralazine is an FDA-approved drug used in the treatment of hypertension, heart failure and cancer. Hydralazine has been recently shown to promote lifespan in C. elegans, rotifer and yeast through a mechanism which has remained elusive. Here we report cAMP-dependent protein kinase (PKA) as the direct target of hydralazine. Using in vitro and in vivo models, we demonstrate a mechanism in which binding and stabilization of a catalytic subunit of PKA by hydralazine lead to improved mitochondrial function and metabolic homeostasis via the SIRT1/SIRT5 axis, which underlies hydralazine’s prolongevity and stress resistance benefits. Hydralazine also protects mitochondrial metabolism and function resulting in restoration of health and lifespan in C. elegans under high glucose and other stress conditions. Our data also provide new insights into the mechanism(s) that explain various other known beneficial effects of hydralazine.


2007 ◽  
Vol 35 (3) ◽  
pp. 335-342 ◽  
Author(s):  
Michael Stigson ◽  
Kim Kultima ◽  
Måns Jergil ◽  
Birger Scholz ◽  
Henrik Alm ◽  
...  

There is an urgent need for new in vitro methods to predict the potential developmental toxicity of candidate drugs in the early lead identification and optimisation process. This would lead to a reduction in the total number of animals required in full-scale developmental toxicology studies, and would improve the efficiency of drug development. However, suitable in vitro systems permitting robust high-throughput screening for this purpose, for the most part, remain to be designed. An understanding of the mechanisms involved in developmental toxicity may be essential for the validation of in vitro tests. Early response biomarkers — even a single one — could contribute to reducing assay time and facilitating automation. The use of toxicogenomics approaches to study in vitro and in vivo models in parallel may be a powerful tool in defining such mechanisms of action and the molecular targets of toxicity, and also for use in finding possible biomarkers of early response. Using valproic acid as a model substance, the use of DNA microarrays to identify teratogen-responsive genes in cell models is discussed. It is concluded that gene expression in P19 mouse embryocarcinoma cells represents a potentially suitable assay system, which could be readily used in a tiered testing system for developmental toxicity testing.


2019 ◽  
Vol 24 (6) ◽  
pp. 615-627 ◽  
Author(s):  
Tijmen H. Booij ◽  
Leo S. Price ◽  
Erik H. J. Danen

The introduction of more relevant cell models in early preclinical drug discovery, combined with high-content imaging and automated analysis, is expected to increase the quality of compounds progressing to preclinical stages in the drug development pipeline. In this review we discuss the current switch to more relevant 3D cell culture models and associated challenges for high-throughput screening and high-content analysis. We propose that overcoming these challenges will enable front-loading the drug discovery pipeline with better biology, extracting the most from that biology, and, in general, improving translation between in vitro and in vivo models. This is expected to reduce the proportion of compounds that fail in vivo testing due to a lack of efficacy or to toxicity.


Sign in / Sign up

Export Citation Format

Share Document