scholarly journals Novel signaling pathways mediating reciprocal control of keratinocyte migration and wound epithelialization through M3 and M4 muscarinic receptors

2004 ◽  
Vol 166 (2) ◽  
pp. 261-272 ◽  
Author(s):  
Alex I. Chernyavsky ◽  
Juan Arredondo ◽  
Jürgen Wess ◽  
Evert Karlsson ◽  
Sergei A. Grando

To test the hypothesis that keratinocyte (KC) migration is modulated by distinct muscarinic acetylcholine (ACh) receptor subtypes, we inactivated signaling through specific receptors in in vitro and in vivo models of reepithelialization by subtype-selective antagonists, small interfering RNA, and gene knockout in mice. KC migration and wound reepithelialization were facilitated by M4 and inhibited by M3. Additional studies showed that M4 increases expression of “migratory” integrins α5β1, αVβ5, and αVβ6, whereas M3 up-regulates “sedentary” integrins α2β1 and α3β1. Inhibition of migration by M3 was mediated through Ca2+-dependent guanylyl cyclase–cyclic GMP–protein kinase G signaling pathway. The M4 effects resulted from inhibition of the inhibitory pathway involving the adenylyl cyclase–cyclic AMP–protein kinase A pathway. Both signaling pathways intersected at Rho, indicating that Rho kinase provides a common effector for M3 and M4 regulation of cell migration. These findings offer novel insights into the mechanisms of ACh-mediated modulation of KC migration and wound reepithelialization, and may aid the development of novel methods to promote wound healing.

2018 ◽  
Vol 19 (11) ◽  
pp. 3473 ◽  
Author(s):  
Jenifer Trepiana ◽  
Iñaki Milton-Laskibar ◽  
Saioa Gómez-Zorita ◽  
Itziar Eseberri ◽  
Marcela González ◽  
...  

This review focuses on the role of 5′-activated protein kinase (AMPK) in the effects of resveratrol (RSV) and some RSV derivatives on hepatic steatosis. In vitro studies, performed in different hepatic cell models, have demonstrated that RSV is effective in preventing liver TG accumulation by activating AMPK, due to its phosphorylation. These preventive effects have been confirmed in studies conducted in animal models, such as mice and rats, by administering the phenolic compound at the same time as the diet which induces TG accumulation in liver. The literature also includes studies focused on other type of models, such as animals showing alcohol-induced steatosis or even steatosis induced by administering chemical products. In addition to the preventive effects of RSV on hepatic steatosis, other studies have demonstrated that it can alleviate previously developed liver steatosis, thus its role as a therapeutic tool has been proposed. The implication of AMPK in the delipidating effects of RSV in in vivo models has also been demonstrated.


1999 ◽  
Vol 276 (2) ◽  
pp. C361-C369 ◽  
Author(s):  
John P. Clancy ◽  
Fadel E. Ruiz ◽  
Eric J. Sorscher

ATP and its metabolites stimulate Cl−secretion in human epithelium in vitro and in vivo. The specific purinergic receptor subtypes that govern these effects have been difficult to separate, in part due to multiple parallel pathways for Cl− secretion in respiratory and intestinal epithelia. In a simplified model using COS-7 cells, we demonstrate acquisition of an ATP-, ADP-, AMP-, and adenosine (ADO)-regulated halide permeability specifically following expression of wild-type (wt) cystic fibrosis transmembrane conductance regulator (CFTR). This halide permeability is blocked by the P1 purinergic receptor antagonist 8-phenyl theophylline, sensitive to the protein kinase A inhibitor H-89, and associated with a modest, dose-dependent increase in cellular cAMP concentration. Phorbol esters poorly activate halide permeability compared with ADO, and ADO-stimulated efflux was not affected by treatment with the protein kinase C inhibitor bisindolylmaleimide I. The A2 ADO receptor (AR) agonists 5′- N-ethylcarboxamide adenosine and ADO were strong activators, whereas the A1 AR agonist R-phenylisopropyladenosine failed to activate halide permeability. Metabolic conversion of ADO nucleotides by surface ecto-5′-nucleotidase to more active (less phosphorylated) forms contributes to anion transport activation in these cells. Immunoprecipitation with anti-A2B AR antibody identified a 31-kDa protein in both COS-7 and human bronchial epithelial cells. Together, these findings indicate that ADO and its nucleotides are capable of activating wtCFTR-dependent halide permeability through A2B AR and that this AR subtype is present in human bronchial epithelium. We also present data showing that this pathway can activate clinically significant mutant CFTR molecules such as R117H.


2008 ◽  
Vol 31 (4) ◽  
pp. 9
Author(s):  
Adam D Durbin ◽  
Gino R Somers ◽  
Michael Forrester ◽  
Gregory E Hannigan ◽  
David Malkin

Background:The integrin-linked kinase (ILK) is a protein kinase involved in the regulation of pathogenic cancer cell behaviours, such as proliferation, survival and invasion. ILK appears to be pro-oncogenic in vitro and in vivo models of tumorigenesis. Rhabdomyosarcoma (RMS) is a primitive mesenchyme-derived tumor and is subclassified into primarily embryonal (ERMS) and alveolar (ARMS) variants. Patients who present with metastatic RMS tumors have a less than 20% chance of cure, suggesting a need to define novel targets for chemotherapeutic intervention. Methods: We used cell culture, murine xenografts and primary human tumors to examine ILK expression and functionality. RNAi and adenoviruses were used to knock down or over expressproteins, and SP600125 was used to inhibit JNK kinase activity. ERMS cells stablye xpressing PAX3-FOXO1A we regenerated using pcDNA3.1 with the full length PAX3-FOXO1A cDNA insert. Results: RNAi-mediated ablation of ILK induced stimulation of ERMS and inhibition of ARMS cell growth in vitro and in vivo. Overexpression of ILK, but not the ILK-R211A mutant reversed these effects. High-throughput screening of multiple tumor cell lines and mesenchymal progenitor cells demonstrated similar ILK anti-growth effects. Consistent with these results, clinical correlations made between ILK immunohistochemical staining intensity and patterns on an ERMS tumor tissue microarray revealed downregulation of ILK in stage III/IV primary tumors. Mechanistically, ILK silencing induced selective phosphorylation of the c-jun amino terminal kinase (JNK) and its target c-Jun in ERMS cells with attenuated phosphorylation in ARMS cells. ERMS cells express higher levels of JNK1 isoforms than ARMS cells. Introduction of the ARMS-associated PAX3-FOXO1A fusion gene into ERMS cells restored the oncogenic function of ILK and downregulated of JNK1. Coupling ILK siRNA with inhibition of the JNK-c-Jun signaling pathway in ERMS cells resulted in growth reductions and apoptotic induction. In contrast, coupling ILK knockdown with overexpression of JNK1 in ARMS cells resulted in growth and c-jun phosphorylation. Conclusion: In summary, these data suggest a model whereby the effect of ILK as an oncogene or tumor suppressor is determined by JNK1. Finally, this data suggests that ILK kinase inhibition may be warranted in ARMS tumors, and may be contraindicated in ERMS.


2005 ◽  
Vol 19 (11) ◽  
pp. 2748-2759 ◽  
Author(s):  
Hye Sook Jung ◽  
Dong Wook Kim ◽  
Young Suk Jo ◽  
Hyo Kyun Chung ◽  
Jung Hun Song ◽  
...  

Abstract Papillary thyroid carcinoma (PTC) is a heterogenous disorder characterized by unique gene rearrangements and gene mutations that activate signaling pathways responsible for cellular transformation, survival, and antiapoptosis. Activation of protein kinase B (PKB) and its downstream signaling pathways appears to be an important event in thyroid tumorigenesis. In this study, we found that the thyroid-specific oncogenic RET/PTC tyrosine kinase is able to phosphorylate PKB in vitro and in vivo. RET/PTC-transfected cells showed tyrosine phosphorylation of endogenous and exogenous PKB, which was independent of phosphorylation of T308 and S473 regulated by the upstream kinases phosphoinositide-dependent kinase-1 and -2, respectively. The PKB Y315 residue, which is known to be phosphorylated by Src tyrosine kinase, was also a major site of phosphorylation by RET/PTC. RET/PTC-mediated tyrosine phosphorylation results in the activation of PKB kinase activity. The activation of PKB by RET/PTC blocked the activity of the forkhead transcription factor, FKHRL1, but a Y315F mutant of PKB failed to inhibit FKHRL1 activity. In summary, these observations suggest that RET/PTC is able to phosphorylate the Y315 residue of PKB, an event that results in maximal activation of PKB for RET/PTC-induced thyroid tumorigenesis.


Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1244-1252 ◽  
Author(s):  
Roman Iakoubov ◽  
Ausma Ahmed ◽  
Lina M. Lauffer ◽  
Richard P. Bazinet ◽  
Patricia L. Brubaker

Abstract Luminal monounsaturated long-chain fatty acids [e.g. oleic acid (OA)] increase secretion of the incretin, glucagon-like peptide-1 (GLP-1) from the ileocolonic L cell. However, it is not known whether OA ingestion causes a sufficient increase in distal luminal concentrations to directly enhance GLP-1 secretion. Furthermore, we have demonstrated that protein kinase Cζ (PKCζ) is required for OA-induced GLP-1 secretion in vitro; however, the physiological relevance of this finding remains unknown. Therefore, we have determined luminal OA concentrations in OA-fed rats and examined the effects of direct OA stimulation on GLP-1 secretion using a novel model of intestinal-specific PKCζ knockdown. Murine GLUTag L cells express numerous fatty acid transport proteins and take up OA in a saturable manner. Oral administration of OA increased the ileal chyme content of OA by 140-fold over 60–120 min (P < 0.05–0.01), peaking at 105 ± 50 μmol/g. To evaluate the direct effects of OA on GLP-1 secretion, 125 mm OA was rectally infused into the colon and terminal ileum of rats. Plasma bioactive GLP-1 increased from 20 ± 6 to 102 ± 21 pg/ml at 60 min (P < 0.01). However, pretreatment with ileocolonic adenoviral PKCζ small interfering RNA resulted in a 68 ± 8% reduction in the GLP-1 response to rectal OA (P < 0.001). The results of these studies indicate that OA levels in the rat terminal gut after oral ingestion are sufficient to induce GLP-1 secretion and that PKCζ is necessary for the effects of OA on GLP-1 secretion in vivo. PKCζ may therefore serve as a novel therapeutic target to enhance GLP-1 levels in patients with type 2 diabetes.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1350-1350
Author(s):  
Dominic M Salerno ◽  
Barbara Hoffman ◽  
Dan A. Liebermann

Abstract Abstract 1350 Poster Board I-372 Stress sensor Gadd45 proteins modulate p38-NF-Kb and JNK signaling, which play major roles in leukocyte activation and innate immunity. We have previously documentedthat under conditions of hematological stress, notably acute stimulation with cytokines or inflammation, both gadd45a-deficient and gadd45b-deficient mice exhibited impaired inflammatory responses as indicated by lower percentages of Gr-1-positive cells in the BM and lower numbers of myeloid cells in peritoneal exudates (Gupta et. al Oncogene 25:5539-46, 2006). Recent evidence has implicated Gadd45 proteins in dendritic cell functions that influence effector Th1 responses to inflammation. However, whether gadd45 genes play a role in modulating the myeloid compartment, notably macrophage & granulocyte functions in response to inflammatory stress, remains largely unexplored. To this end, we have employed in vitro & in vivo models of inflammation using BM derived neutrophils and macrophages from WT, gadd45a and gadd45b null mice. The data obtained indicate that chemotaxis and transmigration to various chemo-attractants, including LPS and fMLP, as well as oxidative burst and phagocytic functions were impaired for both neutrophils and macrophages from mice lacking either gadd45a or gadd45b. Furthermore, upon stimulation with LPS, cytokine secretion, notably, but not exclusively IL-12 and TNFa, was significantly reduced in neutrophils and macrophages of gadd45a-/- and gadd455b-/- mice. Western Blot analysis of BM derived neutrophils lacking gadd45a and stimulated with LPS (500ng/mL) exhibited defects in p38 phosphorylation as compared to controls, suggesting a possible mechanism by which the innate response is impaired. P38 phosphorylation in gadd45b null granulocytes stimulated with LPS appeared comparable to what was observed in wt controls. This suggests that gadd45a and gadd45b utilize different signaling pathways to regulate innate-mmune/inflammtory responses. Interestingly, gadd45a, gadd45b & gadd45g null mice injected intraperitoneally with sublethal (25mg/kg body weight) doses of LPS were significantly more susceptible to septic shock compared to wt mice, as indicated by significantly increased morbidity through 5 days post LPS administration. Moreover, 18 hrs. post-injection, the spleens of KO mice were shown to have numerous apoptotic foci in the white pulp, confirmed to be tingible body macrophages ingesting dying cells by IH and IF for macrophage markers. These in vitro and in vivo data suggest a novel role for gadd45 family members in myeloid innate immune responses. Further elucidation of the signaling pathways involved is in progress and is expected to elucidate the molecular basis for the role Gadd45 proteins play in macrophage and granulocyte innate immune functions. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Esmaeil Dehghan ◽  
Mohammad Goodarzi ◽  
Bahar Saremi ◽  
Rueyling Lin ◽  
Hamid Mirzaei

Abstract Therapeutic activation of mitochondrial function has been suggested as an effective strategy to combat aging. Hydralazine is an FDA-approved drug used in the treatment of hypertension, heart failure and cancer. Hydralazine has been recently shown to promote lifespan in C. elegans, rotifer and yeast through a mechanism which has remained elusive. Here we report cAMP-dependent protein kinase (PKA) as the direct target of hydralazine. Using in vitro and in vivo models, we demonstrate a mechanism in which binding and stabilization of a catalytic subunit of PKA by hydralazine lead to improved mitochondrial function and metabolic homeostasis via the SIRT1/SIRT5 axis, which underlies hydralazine’s prolongevity and stress resistance benefits. Hydralazine also protects mitochondrial metabolism and function resulting in restoration of health and lifespan in C. elegans under high glucose and other stress conditions. Our data also provide new insights into the mechanism(s) that explain various other known beneficial effects of hydralazine.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zahra Farzaneh ◽  
Massoud Vosough ◽  
Tarun Agarwal ◽  
Maryam Farzaneh

AbstractHepatocellular carcinoma (HCC) is the second leading cause of death due to cancer. Although there are different treatment options, these strategies are not efficient in terms of restricting the tumor cell’s proliferation and metastasis. The liver tumor microenvironment contains the non-parenchymal cells with supportive or inhibitory effects on the cancerous phenotype of HCC. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of liver carcinoma cells. Recent studies have established new approaches for the prevention and treatment of HCC using small molecules. Small molecules are compounds with a low molecular weight that usually inhibit the specific targets in signal transduction pathways. These components can induce cell cycle arrest, apoptosis, block metastasis, and tumor growth. Devising strategies for simultaneously targeting HCC and the non-parenchymal population of the tumor could lead to more relevant research outcomes. These strategies may open new avenues for the treatment of HCC with minimal cytotoxic effects on healthy cells. This study provides the latest findings on critical signaling pathways governing HCC behavior and using small molecules in the control of HCC both in vitro and in vivo models.


2020 ◽  
Author(s):  
Xuejun Wang ◽  
Li Zhang ◽  
Mengwen Feng ◽  
Hao Zhang ◽  
Jia Xu ◽  
...  

Abstract Background: It has been acknowledged that endocrine activity is associated with the function of multiple systems in vivo. The apelin-13 peptide has been demonstrated to play a crucial role in physiological and pathological processes. However, the function of apelin-13 peptide in doxorubicin (DOX)-induced cardiotoxicity is unknown. Methods: We explored the function and mechanism of apelin-13 peptide in apoptosis and oxidative stress by cell counting kit-8 (CCK-8) assay, trypan blue staining, TUNEL, lactate dehydrogenase (LDH), mitochondrial membrane potential assay kit with JC-1 (JC-1) and western blot in vitro. Then we verified the effect of apelin-13 in vivo by detecting serum apelin-13, CKMB, LDH, cardiac troponin I (cTnI) and cardiac troponin T (cTnT). EF, FS and LVEDs were used to identify the structural modification by echocardiography. Sirius red staining and HE staining assay were used to detecting the myocardial fibers alteration under apelin-13 treatment.Results: Treatment with apelin-13 peptide significantly enhanced cell viability, mitochondrial membrane potential, but reduced LDH release, rate of apoptotic cells and activation of caspase-3 in vitro. In mice, apelin-13 alleviated the heart dysfunction induced by DOX. 4-oxo-6-((pyrimidin-2-ylthio)methyl)-4H-pyran-3-yl 4-nitrobenzoate (ML221) inhibited the effect of extracellular signal-related kinases (ERK), phosphatidylinositol 3 kinases (PI3K) and protein kinase B (AKT) proteins phosphorylation expression compared with DOX.Conclusion: The apelin-13 and apelin receptor (APJ) interaction on the cell membrane inhibits apoptosis through the ERK/mitogen-activated protein kinase (MAPK) and PI3K/AKT signaling pathways. Our research gives a first glimpse on the biological function and mechanism of apelin-13 on cardiotoxicity.


1998 ◽  
Vol 18 (5) ◽  
pp. 2571-2585 ◽  
Author(s):  
David D. Schlaepfer ◽  
K. C. Jones ◽  
Tony Hunter

ABSTRACT Fibronectin receptor integrin-mediated cell adhesion triggers intracellular signaling events such as the activation of the Ras/mitogen-activated protein (MAP) kinase cascade. In this study, we show that the nonreceptor protein-tyrosine kinases (PTKs) c-Src and focal adhesion kinase (FAK) can be independently activated after fibronectin (FN) stimulation and that their combined activity promotes signaling to extracellular signal-regulated kinase 2 (ERK2)/MAP kinase through multiple pathways upstream of Ras. FN stimulation of NIH 3T3 fibroblasts promotes c-Src and FAK association in the Triton-insoluble cell fraction, and the time course of FN-stimulated ERK2 activation paralleled that of Grb2 binding to FAK at Tyr-925 and Grb2 binding to Shc. Cytochalasin D treatment of fibroblasts inhibited FN-induced FAK in vitro kinase activity and signaling to ERK2, but it only partially inhibited c-Src activation. Treatment of fibroblasts with protein kinase C inhibitors or with the PTK inhibitor herbimycin A or PP1 resulted in reduced Src PTK activity, no Grb2 binding to FAK, and lowered levels of ERK2 activation. FN-stimulated FAK PTK activity was not significantly affected by herbimycin A treatment and, under these conditions, FAK autophosphorylation promoted Shc binding to FAK. In vitro, FAK directly phosphorylated Shc Tyr-317 to promote Grb2 binding, and in vivo Grb2 binding to Shc was observed in herbimycin A-treated fibroblasts after FN stimulation. Interestingly, c-Src in vitro phosphorylation of Shc promoted Grb2 binding to both wild-type and Phe-317 Shc. In vivo, Phe-317 Shc was tyrosine phosphorylated after FN stimulation of human 293T cells and its expression did not inhibit signaling to ERK2. Surprisingly, expression of Phe-925 FAK with Phe-317 Shc also did not block signaling to ERK2, whereas FN-stimulated signaling to ERK2 was inhibited by coexpression of an SH3 domain-inactivated mutant of Grb2. Our studies show that FN receptor integrin signaling upstream of Ras and ERK2 does not follow a linear pathway but that, instead, multiple Grb2-mediated interactions with Shc, FAK, and perhaps other yet-to-be-determined phosphorylated targets represent parallel signaling pathways that cooperate to promote maximal ERK2 activation.


Sign in / Sign up

Export Citation Format

Share Document