scholarly journals Characterization of the Recombinant UDP:flavonoid 3-O-galactosyltransferase from Mangifera indica ‘Irwin’ (MiUFGalT3) involved in Skin Coloring

2020 ◽  
Vol 89 (5) ◽  
pp. 516-524
Author(s):  
Ayako Katayama-Ikegami ◽  
Zion Byun ◽  
Suzuka Okada ◽  
Masahiro Miyashita ◽  
Takane Katayama ◽  
...  
Keyword(s):  
Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 439
Author(s):  
Avinash Chandra Rai ◽  
Eyal Halon ◽  
Hanita Zemach ◽  
Tali Zviran ◽  
Isaac Sisai ◽  
...  

In mango (Mangifera indica L.), fruitlet abscission limits productivity. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide acts as a key component controlling abscission events in Arabidopsis. IDA-like peptides may assume similar roles in fruit trees. In this study, we isolated two mango IDA-like encoding-genes, MiIDA1 and MiIDA2. We used mango fruitlet-bearing explants and fruitlet-bearing trees, in which fruitlets abscission was induced using ethephon. We monitored the expression profiles of the two MiIDA-like genes in control and treated fruitlet abscission zones (AZs). In both systems, qRT-PCR showed that, within 24 h, both MiIDA-like genes were induced by ethephon, and that changes in their expression profiles were associated with upregulation of different ethylene signaling-related and cell-wall modifying genes. Furthermore, ectopic expression of both genes in Arabidopsis promoted floral-organ abscission, and was accompanied by an early increase in the cytosolic pH of floral AZ cells—a phenomenon known to be linked with abscission, and by activation of cell separation in vestigial AZs. Finally, overexpression of both genes in an Atida mutant restored its abscission ability. Our results suggest roles for MiIDA1 and MiIDA2 in affecting mango fruitlet abscission. Based on our results, we propose new possible modes of action for IDA-like proteins in regulating organ abscission.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2876 ◽  
Author(s):  
Lin Tan ◽  
Mei Wang ◽  
Youfa Kang ◽  
Farrukh Azeem ◽  
Zhaoxi Zhou ◽  
...  

Mango (Mangifera indica L.) is abundant in proanthocyanidins (PAs) that are important for human health and plant response to abiotic stresses. However, the molecular mechanisms involved in PA biosynthesis still need to be elucidated. Anthocyanidin reductase (ANR) catalyzes a key step in PA biosynthesis. In this study, three ANR cDNAs (MiANR1-1,1-2,1-3) were isolated from mango, and expressed in Escherichia coli. In vitro enzyme assay showed MiANR proteins convert cyanidin to their corresponding flavan-3-ols, such as (−)-catechin and (−)-epicatechin. Despite high amino acid similarity, the recombinant ANR proteins exhibited differences in enzyme kinetics and cosubstrate preference. MiANR1-2 and MiANR1-3 have the same optimum pH of 4.0 in citrate buffer, while the optimum pH for MiANR1-1 is pH 3.0 in phosphate buffer. MiANR1-1 does not use either NADPH or NADH as co-substrate while MiANR1-2/1-3 use only NADPH as co-substrate. MiANR1-2 has the highest Km and Vmax for cyanidin, followed by MiANR1-3 and MiANR1-1. The overexpression of MiANRs in ban mutant reconstructed the biosynthetic pathway of PAs in the seed coat. These data demonstrate MiANRs can form the ANR pathway, leading to the formation of two types of isomeric flavan-3-ols and PAs in mango.


2017 ◽  
Vol 42 (6) ◽  
Author(s):  
Raksmont Ubonbal ◽  
Saijai Porsoongnoen ◽  
Jureerut Daduang ◽  
Sompong Klaynongsruang ◽  
Sakda Daduang

AbstractIntroduction:The tropical plant amylases involved in the fruit ripening stage is outstanding for their high activities in converting starch to sugars within a short period at high temperatures over 40°C.Methods:The α amylase iso-enzymes from Ok-Rong mango (Results:The enzyme was purified 105-fold with a final specific activity of 59.27 U mgConclusion:Two α amylase iso-enzymes were classified as members of the low-pI group of amylases with identical structure, properties and functions. They are mesophilic with high possibilities for application for many purposes.


HortScience ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1266-1270 ◽  
Author(s):  
Nader R. Abdelsalam ◽  
Hayssam M. Ali ◽  
Mohamed Z.M. Salem ◽  
Elsayed G. Ibrahem ◽  
Mohamed S. Elshikh

Mango (Mangifera indica L.) is a fruit crops belong to the family Anacardiaceae and is the oldest cultivated tree worldwide. Cultivars maintained in Egypt have not been investigated previously. Mango was first brought to Egypt from South Asia. Morphological and molecular techniques were used to identify the genetic diversity within 28 mango cultivars. SSR and EST-SSR were used for optimizing germplasm management of mango cultivars. Significant variations were observed in morphological characteristics and genetic polymorphism, as they ranged from 0.71% to 100%. High diversity was confirmed as a pattern of morphological and genotypes data. Data from the present study may be used to calculate the mango relationship and diversity currently grown in Egypt.


2020 ◽  
Vol 259 ◽  
pp. 108814 ◽  
Author(s):  
Haixia Yu ◽  
Cong Luo ◽  
Yan Fan ◽  
Xiujuan Zhang ◽  
Fang Huang ◽  
...  

2014 ◽  
Vol 85 (1-2) ◽  
pp. 193-208 ◽  
Author(s):  
M. Kamran Azim ◽  
Ishtaiq A. Khan ◽  
Yong Zhang

2010 ◽  
Vol 20 (1) ◽  
pp. 91-99
Author(s):  
R. C. Jena ◽  
K. C. Samal ◽  
P. K. Chand ◽  
B. K. Das

Randomly amplified polymorphic DNA (RAPD) markers were used for the genetic variation and relationship analysis among 12 Mango (Mangifera indica L.) germplasm. Five oligonucleotide primers were employed to amplify DNA from 12 cultivars. PCR amplification with five primers generated 45 reproducible, clear and distinct bands, out of which 41 bands are considered polymorphic and the remaining four fragments (8.88%)  monomorphic. The size of amplified product ranged from 200 (RPI-5) to 3000 base pairs (RPI-1) with an average of nine bands per primer. The average polymorphism in all the 12 cultivars using the five primers was found to be 91.91%. Among all the primers RPI-2 and RPI-4 have shown 100% polymorphism while RPI-5 was found to be least polymorphism (81.81%). One specific band, namely was found with RPI-5, in a particular variety, Chiratpuri. The UPGMA (Unweighted Pair Group Method of Arithmetic Mean) dendrogram based on Jaccard’s similarity coefficient segregated the 12 mango germplasm into two clusters. Langra, Chiratpuri, Pravasankar, Alphanso, Sindhu and Kesar formed one cluster and rest six mango germplasm grouped together into another cluster. Sindhu and Alphanso cultivar pair was very close to each other with highest similarity coefficient (0.78), which was comparatively higher than all other cultivar pairs. On the other hand, Pravasankar and Neelam cultivar pair was more distinct to each other with the lowest intervarietal similarity coefficient 0.38. This study showed clearly that cultivars from Orissa unveiled maximum diversity and indicated the potential of RAPD markers for the identification of management of mango germplasm for breeding purposes.  Key words: Molecular characterization, Mango germplasm, Dversity  D.O.I. 10.3329/ptcb.v20i1.5972 Plant Tissue Cult. & Biotech. 20(1): 91-99, 2010 (June)


Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 75 ◽  
Author(s):  
Haocheng Liu ◽  
Kejing An ◽  
Siqi Su ◽  
Yuanshan Yu ◽  
Jijun Wu ◽  
...  

Mangoes (Mangifera indica L.) are wildly cultivated in China with different commercial varieties; however, characterization of their aromatic profiles is limited. To better understand the aromatic compounds in different mango fruits, the characteristic aromatic components of five Chinese mango varieties were investigated using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry-gas chromatography-olfactometry (GC-MS-O) techniques. Five major types of substances, including alcohols, terpenes, esters, aldehydes, and ketones were detected. GC-O (frequency detection (FD)/order-specific magnitude estimation (OSME)) analysis identified 23, 20, 20, 24, and 24 kinds of aromatic components in Jinmang, Qingmang, Guifei, Hongyu, and Tainong, respectively. Moreover, 11, 9, 9, 8, and 17 substances with odor activity values (OAVs) ≥1 were observed in Jinmang, Qingmang, Guifei, Hongyu, and Tainong, respectively. Further sensory analysis revealed that the OAV and GC-O (FD/OSME) methods were coincided with the main sensory aromatic profiles (fruit, sweet, flower, and rosin aromas) of the five mango pulps. Approximately 29 (FD ≥ 6, OSME ≥ 2, OAV ≥ 1) aroma-active compounds were identified in the pulps of five mango varieties, namely, γ-terpinene, 1-hexanol, hexanal, terpinolene trans-2-heptenal, and p-cymene, which were responsible for their special flavor. Aldehydes and terpenes play a vital role in the special flavor of mango, and those in Tainong were significantly higher than in the other four varieties.


2012 ◽  
Vol 99 (3) ◽  
pp. e117-e119 ◽  
Author(s):  
Yu-Chung Chiang ◽  
Chi-Mou Tsai ◽  
Yu-Kuang H. Chen ◽  
Sheue-Ru Lee ◽  
Chih-Hsiung Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document