scholarly journals Impact of Temperatures During Fruit Development on Fruit Growth Rate and Qualities of ‘KU-PP2’ Peach

Author(s):  
Panawat Sikhandakasmita ◽  
Ikuo Kataoka ◽  
Ryosuke Mochioka ◽  
Kenji Beppu
2017 ◽  
Vol 39 (2) ◽  
Author(s):  
LUCAS EDUARDO DE OLIVEIRA APARECIDO ◽  
RAFAEL BIBIANO FERREIRA ◽  
GLAUCO DE SOUZA ROLIM ◽  
BIANCA SARZI DE SOUZA ◽  
PAULO SERGIO DE SOUZA

ABSTRACT The influence of climate on the development of lychee fruit is complex, but few studies have discussed the problem. We developed agrometeorological models for simulating the development of fruit fresh matter (FM), fruit dry matter (DM), fruit length (LE), fruit diameter (DI), fruit volume (VO), and fruit number per cluster (FN) of the “Bengal” lychee cultivar as functions of climatic conditions. We conducted three analyses: (a) the influence of mean meteorological elements on the rates of fruit growth, (b) estimation of fruit development by the agrometeorological models using sigmoidal adjustments, and (c) simulation of fruit development using multiple nonlinear regression of two meteorological elements to improve the accuracy. A rate of water deficit (WD) near 5 mm d-1 maximised FM, DM, LE, DI, and VO. Increases in potential evapotranspiration (PET), degree days (DD), and actual evapotranspiration (AET) were correlated with increases in VO and decreases in LE and NF. Models estimating fruit development indicated that the accumulation of WD, PET, AET, and DD had sigmoidal relationships with all variables of fruit growth except FN. FN decreased as WD, PET, AET, and DD increased. The adjusted multivariate models were accurate, with the largest error of 6.45 cm3 (VO). The best models were: FM = f(SWD, DD), LE = f(SAET, DD), DI = f(SWD, DD), VO = f(SWD, DD), and FN = f(SAET, WD).


2004 ◽  
Vol 129 (3) ◽  
pp. 407-415 ◽  
Author(s):  
Matthew D. Whiting ◽  
Gregory A. Lang

Canopy fruit to leaf area ratios (fruit no./m2 leaf area, F:LA) of 7- and 8-year-old `Bing' sweet cherry (Prunus avium L.) on the dwarfing rootstock `Gisela 5' (P. cerasus L. × P. canescens L.) were manipulated by thinning dormant fruit buds. F:LA influenced yield, fruit quality, and vegetative growth, but there were no consistent effects on whole canopy net CO2 exchange rate (NCERcanopy). Trees thinned to 20 fruit/m2 LA had yield reduced by 68% but had increased fruit weight (+25%), firmness (+25%), soluble solids (+20%), and fruit diameter (+14%), compared to unthinned trees (84 fruit/m2). Fruit quality declined when canopy LA was ≈200 cm2/fruit, suggesting that photoassimilate capacity becomes limiting to fruit growth below this ratio. NCERcanopy and net assimilation varied seasonally, being highest during stage III of fruit development (64 days after full bloom, DAFB), and falling more than 50% by 90 DAFB. Final shoot length, LA/spur, and trunk expansion were related negatively to F:LA. F:LA did not affect subsequent floral bud induction per se, but the number of flowers initiated per bud was negatively and linearly related to F:LA. Although all trees were thinned to equal floral bud levels per spur for the year following initial treatment (2001), fruit yields were highest on the trees that previously had no fruit, reflecting the increased number of flowers initiated per floral bud. Nonfruiting trees exhibited a sigmoidal pattern of shoot growth and trunk expansion, whereas fruiting trees exhibited a double sigmoidal pattern due to a growth lag during Stage III of fruit development. Vegetative growth in the second year was not related to current or previous season F:LA. We estimate that the LA on a typical spur is only sufficient to support the full growth potential of a single fruit; more heavily-set spurs require supplemental LA from nonfruiting shoots. From these studies there appears to be a hierarchy of developmental sensitivity to high F:LA for above-ground organs in `Bing'/`Gisela 5' sweet cherry trees: trunk expansion > fruit soluble solids (Stage III) > fruit growth (Stage III) > LA/spur > shoot elongation > fruit growth (Stages I and II) > LA/shoot. Current season F:LA had a greater influence on fruit quality than prior cropping history, underscoring the importance of imposing annual strategies to balance fruit number with LA.


1967 ◽  
Vol 18 (1) ◽  
pp. 95 ◽  
Author(s):  
DI Jackson ◽  
BG Coombe

The effect of temperature and gibberellic acid (GA3) applications on apricot fruit have been determined by measurements of fruit size and shape, mesocarp cell number, size, and shape, and endogenous gibberellin. Application of heat during the first 10 nights after anthesis increased the initial growth rate of fruit and of cells in the mesocarp and produced more rapid cell division in this tissue. It did not affect final fruit size or the number and diameter of cells in the mesocarp. Higher temperatures did, however, hasten maturity of fruit. GA3 perfused into branches before anthesis produced an increased drop of flower buds and fruit, raised the ratio of flower buds to leaf buds initiated that season, and resulted in elongated pedicels. Initially, fruit growth rate was increased by GA3, but subsequently it was depressed and final size was below normal. These effects on fruit size were mainly due to effects on the rate of cell division. Some differences were noted in the dimensions of cells but final radial cell diameter did not differ from untreated fruit. GA3-treated fruit ripened sooner than controls. Neither heating nor GA3 treatments affected the level of endogenous gibberellin-like substances in the fruit or their RF on paper chromatograms. There were no significant interactions between temperature and gibberellin in any parameter of apricot fruit growth.


1999 ◽  
pp. 107-112 ◽  
Author(s):  
M.A. Medany ◽  
M.M. Wadid ◽  
A.F. Abou-Hadid

2008 ◽  
Vol 35 (5) ◽  
pp. 403 ◽  
Author(s):  
Eva Domínguez ◽  
Gloria López-Casado ◽  
Jesús Cuartero ◽  
Antonio Heredia

The cuticle of a plant plays an important role in many physiological events of fruit development and ripening. Despite this, little is known about cuticle formation and development. We include a detailed morphological study at the microscopic level of cuticle during fruit growth and ripening using tomato as a fruit model. In addition, a study of the differences in cuticle thickness and composition during development is included. The four genotypes studied in this work showed a similar timing of the main morphological events: initiation of epidermal differentiation, changes in the distribution of the lipid, pectin and cellulose material within the cuticle, appearance of pegs, beginning of cuticle invaginations, maximum thickness and loss of polysaccharidic material. Fruit growth, measured by fruit diameter, showed a positive correlation with the increase of cuticle thickness and the amount of cuticle and their cutin and polysaccharide components per fruit unit during development. By contrast, cuticle waxes showed a different behaviour. Two important characteristics of cuticle growth were observed during tomato fruit development. First, the amount of cuticle per surface area reached its maximum in the first 15 days after anthesis and remained more or less constant until ripening. Second, there was a significant loss of polysaccharidic material from the beginning of ripening (breaker stage) to full red ripe.


2016 ◽  
Vol 15 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Mitsuo Ooyama ◽  
Yuichi Yoshida ◽  
Tran Duy Vinh ◽  
Yoshiyuki Tanaka ◽  
Ken-ichiro Yasuba ◽  
...  

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 669h-670
Author(s):  
Chung-Ruey Yen ◽  
Jer-Way Chang

Fruit growth curves of three longan varieties showed single sigmoid. Seed was the major sink in longan at early fruit development. Aril grew only after seed had approached full development. Early `Yangtaoyeh' grew more rapidly than two later varieties. Desweeting, levels of aril total soluble solids (TSS) increased to maximum and then declined gradually at later fruit development, occurs often in longan. Variation of desweeting rate among varieties was significant. Increases of fruit weight during desweeting (from dates of maximum TSS to end of experiment) were 55.4%, 50.9%, and 7.3% for `Yangtaoyeh', `Fenko', and `Shihyueh', respectively. Periods of water contents increase in aril coincided with the changes of fruit weight of three varieties. Dilution of TSS by water inflow was one of major factor of desweeting in longan fruit. Girdling did not slow down decline of aril total soluble solids.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 687f-688
Author(s):  
Chunlin Xiao ◽  
Mosbah M. Kushad

5'-methylthioadenosine (MTA) nucleosidase (EC.2.2.2.28) and 5-methylthioribose (MTR) kinase (EC.2.7.1.100) activities were evaluated in `rin', `nor', and `Rutgers' tomato fruit during development and ripening. Changes in the activities of these enzymes were compared to ethylene biosynthesis. MTA nucleosidase and MTR kinase activities in `rin' and `nor' were ≈30% and 22%, respectively, lower than `Rutgers' during the first 2 weeks of fruit development. In `Rutgers', activities of these enzymes declined sharply until fruit maturity. Shortly before climacteric rise in ethylene synthesis, MTA nucleosidase, and MTR kinase activities increased, reaching a maximum level before peak ethylene synthesis then declined when fruit started to approach senescence. Whereas, `rin' and `nor' mutants exhibited no climacteric rise in ethylene synthesis and no change in MTA nucleosidase or MTR kinase activities, following their decline after 2 weeks of growth. A rapid increase in ethylene synthesis was observed when mature green `rin' and `nor' fruit were wounded. This increase in ethylene was paralleled by an increase in MTA nucleosidase and MTR kinase activities. However, increase in wound ethylene, MTA nucleosidase, and MTR kinase activities in `rin' and `nor' was ≈40% less than what we had previously reported in `Rutgers'. Relationship of MTA and MTR kinase activities to fruit growth, development, ripening, and natural and wound ethylene biosynthesis will be described.


1997 ◽  
Vol 122 (6) ◽  
pp. 772-777 ◽  
Author(s):  
J.L. Saenz ◽  
T.M. DeJong ◽  
S.A. Weinbaum

This study was designed to characterize the mechanisms of N-stimulated peach Prunus persica (L.) Batsch productivity. The effects of N fertilization on potential assimilate availability (source capacity) and on the growth capacity of individual fruit (sink capacity) were assessed. On heavily thinned trees, fertilization did not stimulate fruit growth rates relative to those on nonfertilized trees, suggesting that fruit growth rates were not assimilate-limited throughout the period of fruit development. However, N fertilization resulted in a longer fruit development period and increased the growth potential of individual fruit by 20% (fresh mass) and 15% (dry mass) vs. controls. In unthinned trees, N fertilization increased total fruit yield by 49% (fresh mass) and 40% (dry mass) compared to the unthinned, nonfertilized controls. N fertilization increased total fruit yield per tree in unthinned peach trees by extending the fruit development period and thus increasing the amount of assimilate accumulated for fruit growth. The fruit development period was prolonged both by assimilate deprivation associated with increasingly higher crop loads and by N fertilization. Thus, the prolongation of the peach fruit development period by N-fertilization appears inconsistent with the role of N in increasing assimilate availability for fruit growth. We conclude that N fertilization stimulates peach yields by increasing the period for fruits to use assimilates (sink capacity). The effect of N on assimilate availability was not directly evaluated. The timing of fertilizer N availability did not influence fruit growth potential.


Sign in / Sign up

Export Citation Format

Share Document