scholarly journals Wedge Mode Propagation Characteristics of Triangular–shaped Surface Plasmon Waveguide

Author(s):  
Nguyen Van Chinh ◽  
Nguyen Thanh Huong ◽  
Chu Manh Hoang

Abstract: In this paper, we investigate wedge mode propagation characteristics of a triangular-shaped surface plasmon waveguide. This structure consists of a thin metal layer deposited onto the surface of a triangular–shaped silicon waveguide which could be fabricated on a silicon–on–insulator wafer by wet–bulk micromachining. These elements are embedded in a dielectric medium (such as air) to form metal–dielectric interface and the surface plasmon wave propagates at the wedge of metal layer. The influence of structural parameters such as metal layer, height of silicon waveguide and effect of fabrication on the wedge mode propagation characteristics of the waveguide is analyzed by using numerical simulation. Keywords: V–shaped waveguide, Surface plasmon polariton, plasmonic waveguide.

Author(s):  
Pratibha Verma ◽  
Arpan Deyasi

This chapter is proposed with an approach to analyze reflectance as a function of negative index material thickness for different parameters under the surface plasmon condition and extended approach towards the field enhancement of electric field as function of incidence angle and transmittance as function of incidence angle has been analyzed. This chapter can reflect the good comparison between 3 layer medium and n layer medium model. Characteristic impedance of MIM surface plasmon structure is analytically calculated considering the effect of both Faraday inductance and kinetic inductance. Effect of metal layer thickness, insulator thickness, and electron density are tailored to observe the impedance variation with frequency. Wavelength dependence of characteristic impedance and quality factor of MIM (metal-insulator-metal) surface plasmon structure is analyzed. Structural parameters and damping ratio of the structure is tuned within allowable limit to analyze the variation after detailed analytical computation.


2011 ◽  
Vol 222 ◽  
pp. 154-157 ◽  
Author(s):  
Atsushi Ono ◽  
Hiroaki Satoh ◽  
Hiroshi Inokawa

We have investigated the absorption spectra of silicon-on-insulator (SOI) photodiode with Au thin film which is corrugated by SiO2 line-and-space structure. It is aimed for the high-efficiency of SOI absorption by surface plasmon resonance. The structural parameters such as SiO2 thickness, period of corrugation, and the duty-ratio were optimized by FDTD simulation.


Photonics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 21 ◽  
Author(s):  
Nguyen Thanh Huong ◽  
Nguyen Van Chinh ◽  
Chu Manh Hoang

In this paper, we propose and investigate the modal characteristics of wedge surface plasmon polariton (SPP) waveguides for guiding surface plasmon waves. The wedge SPP waveguides are composed of a silver layer deposited onto the surface of a wedge-shaped silicon dielectric waveguide. The wedge-shaped silicon dielectric waveguides are explored from the anisotropic wet etching property of single crystal silicon. The wedge SPP waveguides are embedded in a dielectric medium to form the metal–dielectric interface for guiding the surface plasmon waves. The propagation characteristics of the wedge SPP waveguides at the optical telecommunication wavelength of 1.55 μm are evaluated by a numerical simulation. The influence of the physical parameters such as the dimensions of the wedge SPP waveguide and the refractive index of the dielectric medium on the propagation of the surface plasmon wave is investigated. In addition, by comparing the propagation characteristics, we derive the wedge SPP waveguide with the optimal performance.


Ultrasonics ◽  
2021 ◽  
Vol 114 ◽  
pp. 106369
Author(s):  
James M. Hughes ◽  
Munawwar Mohabuth ◽  
Andrei Kotousov ◽  
Ching-Tai Ng

2016 ◽  
Vol 30 (22) ◽  
pp. 1650280 ◽  
Author(s):  
Rui-Bing Wang ◽  
Zhi-Dong Zhang ◽  
Guo-Tai Jiao ◽  
Chen-Yang Xue ◽  
Shu-Bin Yan ◽  
...  

The extinction spectra and electric field distribution of an asymmetric cylindrical nanorod dimer (ACND) are calculated by discrete dipole approximation. The ACND is composed of two linear orders of cylindrical silver nanorods with different radii and lengths. The effects of the structural parameters of ACND on the localized surface plasmon resonance (LSPR) mode are also studied. Results show two resonance peaks in the extinction spectra of ACND: the higher-energy anti-bonding mode and the lower-energy bonding mode. The interaction of two hybridization plasmonic resonance modes produces an asymmetric line shape in the extinction spectra, which is considered to be a Fano resonance profile.


2011 ◽  
Vol 110-116 ◽  
pp. 764-768
Author(s):  
Niladri Pratap Maity ◽  
Reshmi Maity

The existence of Surface Plasmons (SPs) is possible only if the metal have a negative dielectric constant at the corresponding optical frequency. In this paper the propagation characteristics of Surface Plasmon Waves (SPWs) which exists on noble metals like gold (Au) and silver (Ag) due to the formation of Surface Plasmon Polaritons (SPPs), have been evaluated theoretically and simulated with the help of MATLAB programming language. The variation of the propagation constant (PC), the attenuation coefficient (AC) and the penetration depth (PD) inside the metals and the dielectric has been determined. It has been found that highly conducting metals Au and Ag provide a strong confinement to the SPWs at optical frequencies.


2021 ◽  
Author(s):  
Mona Rostami ◽  
Ferydon Babaei

Abstract In this study, we reported plasmon-exciton coupling for excitation the surface plexciton in columnar thin film with a central exciton slab using the transfer matrix method in Kretschmann configuration. The optical absorption spectra for surface plasmon polariton, surface exciton and surface plexciton was investigated at different structural parameters in proposed structure. The characteristics of surface optical modes were analyzed and there was an anticrossing behavior between polariton branches of plexciton spectra. Localization of surface modes on interfaces and hybridization between plasmons and excitons at both interfaces of exciton slab were proved by the time-averaged Poynting vector. We found that the types of coupling regimes between plasmons and excitons from weak to strong could be achieved. We found a high Rabi splitting energy 840 meV corresponding to the time period 5 fs which includes to the fast energy transfer between surface plasmon polaritons and surface excitons.


Sign in / Sign up

Export Citation Format

Share Document