scholarly journals Investigation on the Thermoluminescence Properties of KGdF4:Sm3+ Polycrystalline

Author(s):  
Phan Van Do

KGdF4 polycrystalline doped with the different concentration of Sm3+ ions were synthesized by hydrothermal technique. Thermoluminescence (TL) glow curves of samples were measured in the range from 50 oC to 400 oC after irradiating beta, neutron and X-ray radiations. The response of TL intensity to impurity concentration and neutron dose were studied in detail. The TL kinetic parameters such as activation energy (E) and frequency factor (s) were estimated by using the method of heating rate variation.

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4060
Author(s):  
Ziad Abu El-Rub ◽  
Joanna Kujawa ◽  
Samer Al-Gharabli

Oil shale is one of the alternative energies and fuel solutions in Jordan because of the scarcity of conventional sources, such as petroleum, coal, and gas. Oil from oil shale reservoirs can be produced commercially by pyrolysis technology. To optimize the process, mechanisms and rates of reactions need to be investigated. Omari oil shale formation in Jordan was selected as a case study, for which no kinetic models are available in the literature. Oil shale was analyzed using the Fischer assay method, proximate analysis (moisture, volatile, and ash), gross calorific value, elemental analysis (CHNS), and X-ray fluorescence (XRF) measurements. Non-isothermal thermogravimetric analysis was applied to study the kinetic parameters (activation energy and frequency factor) at four selected heating rates (5, 10, 15, and 20 °C/min). When oil shale was heated from room temperature to 1100 °C, the weight loss profile exhibited three different zones: drying (devolatilization), pyrolysis, and mineral decomposition. For each zone, the kinetic parameters were calculated using three selected methods: integral, temperature integral approximation, and direct Arrhenius plot. Furthermore, the activation energy in the pyrolysis zone was 112–116 kJ/mol, while the frequency factor was 2.0 × 107 − 1.5 × 109 min−1. Moreover, the heating rate has a directly proportional relationship with the rate constant at each zone. The three different methods gave comparable results for the kinetic parameters with a higher coefficient of determination (R2) for the integral and temperature integral approximation compared with the direct Arrhenius plot. The determined kinetic parameters for Omari formation can be employed in developing pyrolysis reactor models.


2012 ◽  
Vol 550-553 ◽  
pp. 2758-2762 ◽  
Author(s):  
Xi Jie Chu ◽  
Yong Gang Wang ◽  
Li Hong Zhao

The pyrolysis tests of Shenhua coal and Shenhua direct liquefaction residue have been carried out using thermogravimetric at the differential heating rate. The kinetic parameters k and E were calculated using DAEM method. Results show DAME model can describe the pyrolysis behavior of Shenhua coal within the range of 20% to 95%, the activation energy of coal pyrolysis ranges from 53.98 to 279.38 kJ/mol, and DAME model can describe the behavior of Shenhua direct liquefaction residue within the range of 10% to 80%, the activation energy of residue pyrolysis is about 170 kJ/mol. The results of which are basically consistent with the experimental data.


2018 ◽  
Vol 21 (2) ◽  
pp. 75-80 ◽  
Author(s):  
Alok Dhaundiyal ◽  
Muammel M. Hanon

Abstract This paper deals with pyrolysis decomposition of Cedrus deodara leaves with the help of thermogravimetric analysis (TGA). Experiments are performed in the presence of inert atmosphere of nitrogen. Experiments are conducted at three different heating rates of 5 °C∙min-1, 10 °C∙min-1 and 15 °C∙min-1 within temperature range of 35 °C to 700 °C. Arrhenius parameters such as activation energy and frequency factor are estimated by Flynn Wall and Ozawa (FWO), Kissinger-Akahira-Sonuse (KAS) and Kissinger. The activation energy and frequency factor calculated by using Kissinger method are 67.63 kJ∙mol-1 and 15.06 . 104 min-1 respectively; whereas the averaged values of the same parameters through FWO and KAS methods are 89.59 kJ∙mol-1 and 84.748 kJ∙mol-1, 17.27 . 108 min-1 and 62.13 . 107 min-1 respectively. Results obtained through Kissinger method represent the actual values of kinetic parameters. Conversely, FWO and KAS methods reflect the apparent values of kinetic parameters, as they are highly influenced by the overlapping of competitive reactions occur during pyrolysis.


2003 ◽  
Vol 18 (10) ◽  
pp. 2339-2349 ◽  
Author(s):  
Latifa A. Al-Hajji ◽  
Muhammad A. Hasan ◽  
Mohamed I. Zaki

The formation of barium monomolybdate (BaMoO4) in inequimolar powder mixtures of BaCO3 and MoO3 was examined under isothermal and nonisothermal conditions upon heating in air at 25–1200 °C, using thermogravimetry. Concurrence of the observed mass loss (due to the release of CO2) to the occurrence of the formation reaction was evident. Accordingly, the extent of reaction (x) was determined as a function of time (t) or temperature (T). The x-t and x-T data thus obtained were processed using a well-established mathematical apparatus and methods to characterize the nature of the reaction rate-determining step and derive isothermal and nonisothermal kinetic parameters (rate constant, frequency factor, reaction order, and activation energy). Moreover, the reaction mixture quenched at various temperatures (450–575 °C) in the reaction course was analyzed by various spectroscopic (x-ray diffractometry, infrared spectroscopy, and laser Raman spectroscopy) and microscopic (scanning electron microscopy and x-ray energy dispersive spectroscopy) techniques for material characterization. The results obtained indicated that the reaction rate may be controlled by unidirectional diffusion of MoO3 species through the product layer (BaMoO4), which was implied to form on the barium carbonate particles. The nonisothermally determined activation energy (156 kJ/mol) was found to be close to the isothermally determined one (164–166 kJ/mol)


2016 ◽  
Vol 31 (2) ◽  
pp. 111-120 ◽  
Author(s):  
Zdravko Vejnovic ◽  
Milos Pavlovic ◽  
Pavle Hadzic ◽  
Milorad Davidovic

Equations for the calculation of kinetic parameters of thermoluminescent processes are theoretically derived for a model of an ideal phosphor. The values used in the calculation are obtained from glow curves and the function that describes the normalized glow curve generated. On the basis of this function, the equations for activation energy, frequency factor, and retrapping factor, were derived. All expressions are valid for a general case, when the filling factor of traps is f0?1. The concept of kinetics order was used for the calculation of parameters and the parameter of kinetics order was defined by means of real physical parameters. Results obtained by the analysis of synthetic curves and experimental glow curves of phosphor materials provide a deeper understanding of thermoluminescent kinetics.


2000 ◽  
Vol 18 (6) ◽  
pp. 573-580 ◽  
Author(s):  
Zou Yong ◽  
Han Bu-Xing

On the basis of micropore formation in carbonaceous materials, the activation energy for the potassium hydroxide activation of Chinese petroleum coke and coal has been deduced theoretically as dB0/dt = A exp(–Ea∈/RT), where ∈ is the formation energy for the metastable solid formed at the activation temperature. The kinetic parameters (frequency factor, A, and apparent activation energy, Ea) were calculated from this equation as being 5.319 mg/(g min), 36.51 kJ/mol and 6.64 mg/(g min), 49.46 kJ/mol, respectively, for the two carbonaceous materials studied.


1988 ◽  
Vol 42 (4) ◽  
pp. 655-658 ◽  
Author(s):  
Randy W. Snyder ◽  
C. Wade Sheen

A method is shown for the determination of kinetic parameters from dynamic FT-IR experiments. The effect heating rate has on the reproducibility of the calculated activation energy is discussed. The curing of PMDA/ODA polyimide at several heating rates is given as an example.


2000 ◽  
Vol 15 (4) ◽  
pp. 967-973 ◽  
Author(s):  
N. Uekawa ◽  
Y. Kurashima ◽  
K. Kakegawa ◽  
Y. Sasaki

Fe(III)-doped TiO2 (anatase) was prepared by the oxidation of FexTiS2. Two calcination methods were used to oxidize FexTiS2. In the first, sulfide was calcined in air at a given temperature for 2 h. In the second method, the sulfide was heated in air at a finite heating rate (2.5 K/min) and then held at a constant temperature for 2 h. Fe(III) ions completely dissolved into TiO2 (anatase), forming Fe(III)-doped TiO2 (anatase), in the composition range of 0 ⩽ Fe/Ti ⩽ 0.3 (mole ratio). The properties of the obtained oxide depended on the oxidation method of FexTiS2. The electronic property and the valence stage of the Fe(III)-doped TiO2 (anatase) were examined. The activation energy of electronic conduction decreased with an increase of the doped amount of Fe(III) ions. The x-ray photoelectron spectroscopy result showed that the electron density on the Ti ion in the Fe(III)-doped TiO2 (anatase) was decreased by the Fe(III) doping.


Sign in / Sign up

Export Citation Format

Share Document