scholarly journals MANUFACTURE OF PLASTICS FILM CONTAINING OF POLYSTIRENE, POLYCAPROLACTONE, POLY(3-HIDROKSIBUTYRATE-CO-3- HIDROXYVALERATE) AND BIODEGRADATION STUDY IN OCEAN WATER

2014 ◽  
Vol 7 (2) ◽  
pp. 107
Author(s):  
Asiska Permata Dewi ◽  
Erizal Zaini ◽  
Akmal Djamaan

 ABSTRACTThe manufacture of a biodegradable plastics film containing of polymer synthetic polystyrene(PS) and biopolymer of polycaprolactone (PCL), poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[P(3HB-ko-3HV)] and biodegradation study in ocean water has been carried out. Plastics filmcontaining of PS/PCL/P(3HB-ko-3HV) produced by blending techniques followed by solventcasting with ratios were of 100/0/0, 95/5/0, 95/0/5, 90/5/5, 85/10/5, 85/5/10. This testing wasconducted based on immersion test method recommend by American Society for Testing andMaterials. Poly blend plastics film PS/PCL/P(3HB-ko-3HV) were characterized by tensilestrength, thermal properties and SEM analysis. The profiles of the rate biodegradation view byweight reduction of the tested plastic film for 1-7 weeks period. Tensile strength analysisshowed the decreasing of tensile strength with the addition of P(3HB-ko-3HV). Thermalanalysis showed a decreasing in the melting point with the addition of PCL and P(3HB-co-3HV). SEM micrograph showed the destruction occurred and erosion at surface of plastic filmduring observation time. The rate of biodegradation showed that increasing of PCL and P (3HBco-3HV) in a mixture of plastic film, so biodegradation increased.Keywords: polystyrene, polycaprolactone, poly(3-hidroxybutyrate-co-3-hydroxyvalerate),biodegradation, film plastic.

2015 ◽  
Vol 4 (3) ◽  
pp. 35-39
Author(s):  
Afiifah Radhiyatullah ◽  
Novita Indriani ◽  
M. Hendra S. Ginting

Bioplastics are plastics which can be degraded by microorganisms and is made from renewable materials. Plastic film is made from potato starch (contain of starch that founded in potatoes is 22-28%), glycerol as a plasticizer and acetic acid as a catalyst. The purpose of this reasearch is to determine glycerol variation and starch weight effect on the characteristics of potato starch plastic films. Manufacture of plastic films use blending starch method with potato starch weight variations (10 g, 15 g and 20 g) and glycerol volume variations (0 ml, 1 ml, 2 ml and 3 ml). Bioplastic analysis are FTIR test, tensile strength that is supported by SEM analysis. The results obtained in the FTIR analysis does not form a new cluster on potato starch plastic film, neither on the plastic film with or without glycerol. FTIR results obtained in two plastic film are the change of OH, C = C, and CH groups strain. The strain value of OH group on potato starch is 3579.88 cm-1 turned into 2978.09 cm-1 for plastic film without glycerol while the plastic film with glycerol to be 3541.31 cm -1 and 2970.38 cm-1. C = C group is 1635.64 cm-1turned to 1697.36 cm -1 and 1697.36 cm -1. As for CH group is 2873.79 cm -1 turned to 2877.79 cm -1 and 2870.08 cm -1. And tensile strength of plastic film decreased with increasing glycerol volume. Maximum tensile strength of plastic film occurs when potato starch weight is 10 g and glycerol volume is 0 ml is 9.397 MPa. While SEM results obtained confirm on tensile strength plastic film, where there are voids, indentations and insoluble starch clump starch that can affect the value of tensile strength plastic film.


2017 ◽  
Vol 5 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Azaria Robiana ◽  
M. Yashin Nahar ◽  
Hamidah Harahap

Glycerin residue is waste oleochemical industry that still contain glycerin. To produce quality and maximum quantity of glycerin, then research the effect of pH acidification using phosphoric acid. Glycerin analysis includes the analysis of pH, Fatty Acid and Ester (FAE), and analysis of the levels of glycerin. The maximum yield obtained at pH acidification 2 is grading 91,60% glycerin and Fatty Acid and Ester (FAE) 3,63 meq/100 g. Glycerin obtained is used as a plasticizer in the manufacture of bioplastics. Manufacture of bioplastics using the method of pouring a solution with varying concentrations of starch banana weevil (5% w/v and 7% w/v), variations of the addition of glycerin (1 ml, 3 ml, 5 ml and 7 ml), and a variety of gelatinization temperature (60°C, 70°C, and 80°C). Analysis of bioplastics include FTIR testing, tensile strength that is supported by SEM analysis. The results obtained in the analysis of FTIR does not form a new cluster on bioplastics starch banana weevil, but only a shift in the recharge area only, it is due to the addition of O-H groups originating from water molecules that enter the polysaccharide through a mechanism gelatinitation that generates interaction hydrogen bonding strengthened. The maximum tensile strength of bioplastics produced at a concentration of starch 7% w/v, 1 ml glycerine and gelatinization temperature of 80°C is 3,430 MPa. While the tensile strength bioplastic decreased with increasing glycerin which can be shown from the results of SEM where there is a crack, indentations and lumps of starch insoluble.


2021 ◽  
pp. 004051752110086
Author(s):  
MJ Suriani ◽  
SM Sapuan ◽  
CM Ruzaidi ◽  
DS Nair ◽  
RA Ilyas

This paper aims to study the surface morphology, flammability and tensile properties of sugar palm fiber (SPF) hybrid with polyester (PET) yarn-reinforced epoxy composite with the addition of magnesium hydroxide (Mg(OH)2) as a flame retardant. The composites were prepared by hybridized epoxy and Mg(OH)2/PET with different amounts of SPF contents (0%, 20%, 35% and 50%) using the cold press method. Then these composites were tested by horizontal burning analysis, tensile strength testing and scanning electron microscopy (SEM) analysis. The specimen with 35% SPF (Epoxy/PET/SPF-35) with the incorporation of Mg(OH)2 as a flame retardant showed the lowest burning rate of 13.25 mm/min. The flame took a longer time to propagate along with the Epoxy/PET/SPF-35 specimen and at the same time producing char. Epoxy/PET/SPF-35 also had the highest tensile strength of 9.69 MPa. Tensile properties of the SPF hybrid with PET yarn (SPF/PET)-reinforced epoxy composite was decreased at 50% SPF content due to the lack of interfacial bonding between the fibers and matrix. Surface morphology analysis through SEM showed uniform distribution of the SPF and matrix with less adhesion, which increased the flammability and reduced the tensile properties of the hybrid polymeric composites. These composites have potential to be utilized in various applications, such as automotive components, building materials and in the aerospace industry.


2017 ◽  
Vol 79 (7-4) ◽  
Author(s):  
Muhammad Ashraff Ahmad Seri ◽  
Esah Hamzah ◽  
Abdelsalam Ahdash ◽  
Mohd Fauzi Mamat

Recently, self-healing coating is classified as one of the smart coatings which has the ability to heal or repair damage of the coating to prevent further corrosion. The aim of this study is to synthesize the self-healing coatings from polymeric material and evaluate the performance and their corrosion behavior when coated on steel substrates. The corrosion tests were performed using immersion test and salt spray test method at room temperature. The immersion test shows that self-healing coating gives lower corrosion rate compared to pure epoxy paint, with a value of 0.02 and 0.05 mm/year respectively. Also, salt spray test shows similar trend as the immersion test, which is 0.11 and 0.19 mm/year for self-healing coating and pure epoxy paint respectively. While uncoated samples without any protection corroded at 0.89 mm/year. It was also found that the damage on self-healing coating was covered with zeolite from the microcapsules indicating that the self-healing agent was successfully synthesized and could function well. In other words, self-healing coating shows better corrosion resistance compared to the pure epoxy coating on steel substrate.


1989 ◽  
Vol 62 (4) ◽  
pp. 643-655
Author(s):  
Richard W. Tomlinson ◽  
Daniel F. Sheridan

Abstract The use of pulsed NMR analysis under proper operating conditions has proven to be useful for controlling various polymer compositions in the manufacture of EPDM. It can be used in determining the amount of oil incorporated into oil-extended EPDMs. At higher oil contents, the differences in EPDM properties will affect this test method, which will require a separate calibration curve for each type of polymer. It can be used to measure the propylene content of EPDM. Comparison data have shown that this technique is more accurate in predicting crystallinity or propylene content than the standard IR method within the propylene range of 22 to 41%. Pulsed NMR can also be used to predict uncured EPDM compound tensile strength and EPDM/PP compression-molded tensile strength. Since these properties are affected by the crystallinity of EPDM, of which percent ethylene is the major contributor, then tensile strength can be determined indirectly. Based on the tensile and SER correlation, it seems obvious that this technique is measuring the spin-spin relaxation times of the crystalline phase, whereas the ir method is only measuring propylene content.


Sign in / Sign up

Export Citation Format

Share Document