scholarly journals Geometry Modified Square Edge Orifice Valve Study for Efficiency Gas Lift with Computational Fluid Dynamic (CFD) Method

Author(s):  
Adam Fatchur Rohman ◽  
Sugiatmo Kasmungin ◽  
Dwi Atty Mardiana

<em>The gas lift lifting system is widely used as an artificial lift on the X Field, with an average depth of gas lift production wells of 3,000-3,500 ft. Design of 3 to 5 Gas lift Valves (GLV) designwith size of 1 inch is ussualy applied. While at the point of gas injection, the GLV square edge orifice is applied. The problem in the optimization of gas lift wells is the flow instability due to gas flow rate fluctuations, the limited volumetric gas injection and limited gas compressor pressure. With the limited compressor pressure, the lift flow and gas design speed is very dependent on the amount of pressure on the compressor, the production wells with limited injection pressure will result in a limited amount of gas injection, the square edge orifice requires a pressure difference of 40% to achieve the maximum gas flow rate. This study aims to find the modification of the GLV orifice geometry to improve the efficiency of the gas lift system so that it can get optimal production. This GLV design modification includes changing the GLV orifice geometry. Design studies using Computational Fluid Dynamic (CFD) simulations aim to analyze any changes in GLV geometry design to the performance of the gas flow rate in the orifice valve described in the valve performance curve. The design modification approach is in accordance with the GLV venturi orifice geometry and the availability of equipment for GLV modification. The CFD simulation results of the first modification geometry by increasing the orifice diameter from 0.25 to 0.5 inch with the condition of upstream 650 psig and downstream 625 psig pressure increasing the injection gas flow rate capacity by 355% and modifying the second geometry with the venturi orifice form by 280%. In modifying the shape of the orifice venture to reach critical flow requires a pressure difference of 10%. Based on simulation results, the modified orifice application is able to increae production up to 44%.</em>

2021 ◽  
Author(s):  
Serhii Matkivskyi ◽  
Liliia Khaidarova

The overwhelming majority of natural gas fields are at the final stage of development, which, along with other features, is characterized by selective watering of productive deposits and production wells. The difficulty of extracting residual gas reserves under such development conditions is associated with depletion of productive reservoirs, accumulation of fluid at the bottom of wells, corrosion of downhole equipment and the inability to reduce wellhead pressures due to restrictions on the supply and preparation of hydrocarbon products with the existing surface infrastructure. Production wells in conditions of formation water inflow into productive deposits are decommissioned after relatively small gas withdrawals. This is due both to the insufficient implementation of methods for intensifying the removal of fluid from the bottom of the wells, and to the peculiarities of the arrangement of fields, which are usually not designed for the collection and preparation of hydrocarbon products with a high liquid content. In order to remove the gas-liquid mixture from the bottom of the wells, many techniques and inventions have been developed that are widely used in production. The developed technologies are characterized by different efficiency and have a number of technological limitations, mainly due to the peculiarities of the geological structure of hydrocarbon deposits. Considering the above, there is a need for additional research in order to improve the existing and develop new technologies for the operation of water cut wells. Using the special software package, studies were carried out to optimize the operating conditions for a water cut well under conditions of active formation water inflow into gas-saturated horizons. The study was carried out for various depths of gas-lift valves (3500 m; 3000 m; 2500 m; 2000 m; 1500 m; 1000 m) and liquid flow rates (22.5 m3/day; 33.75 m3/day and 45 m3/day). Based on the research results, graphical dependences of gas flow rates and bottomhole pressure on the amount of gas-lift gas were built; the maximum gas flow rate and the required amount of gas-lift gas from the liquid flow rate; maximum gas flow rate versus liquid flow rate at different depths of gas-lift valve installation. Based on the results of statistical processing of the calculated data for each value of the liquid flow rate, the optimal value of the depth of the gas-lift valve was established. According to the results of the studies performed, to ensure the stable operation of high-water cut gas wells, it is effective to locate the gas-lift valve at a distance of 55-58 % from the wellhead of the tubing (2033-2137 m).


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 917
Author(s):  
Luis E. Jardón-Pérez ◽  
Carlos González-Rivera ◽  
Marco A. Ramirez-Argaez ◽  
Abhishek Dutta

Ladle refining plays a crucial role in the steelmaking process, in which a gas stream is bubbled through molten steel to improve the rate of removal of impurities and enhance the transport phenomena that occur in a metallurgical reactor. In this study, the effect of dual gas injection using equal (50%:50%) and differentiated (75%:25%) flows was studied through numerical modeling, using computational fluid dynamics (CFD). The effect of gas flow rate and slag thickness on mixing time and slag eye area were studied numerically and compared with the physical model. The numerical model agrees with the physical model, showing that for optimal performance the ladle must be operated using differentiated flows. Although the numerical model can predict well the hydrodynamic behavior (velocity and turbulent kinetic energy) of the ladle, there is a deviation from the experimental mixing time when using both equal and differentiated gas injection at a high gas flow rate and a high slag thickness. This is probably due to the insufficient capture of the velocity field near the water–oil (steel–slag) interface and slag emulsification by the numerical model, as well as the complicated nature of correctly simulating the interaction between both gas plumes.


2011 ◽  
Vol 233-235 ◽  
pp. 1940-1945
Author(s):  
Fang Jiang ◽  
Guo Guang Cheng ◽  
Hai Kuo Yang

Cold model experiments have been conducted to make clear the effect of orifices on bubble behavior based on the comparison of 1-hole and 4-hole configurations. It is found that this effect is closely related to the gas flow rate and the orifice configuration. For 1-hole orifices, bubble behavior is influenced by the hole diameter at low gas flow rate. Nevertheless, in the region of high gas flow rate, this effect becomes less obvious. However, bubble behavior is strongly affected even at high gas flow rate when 4-hole orifices are used. It is also shown there exists an optimal distance between holes for 4-hole orifices. Below this value, the hole distance is too small to adequately avoid bubble coalescence in the radial direction. Above this value, little further contribution to avoidance of bubble coalescence can be made, but weight and cost of the orifices will increase.


2015 ◽  
Vol 1104 ◽  
pp. 33-37
Author(s):  
Jian Yu Yuan ◽  
Yan Xiang Li ◽  
Xiang Chen ◽  
Yu Tong Zhou

The present study proposed a convenient method to characterize the stability of aluminum foams by utilizing the resulting foam height. The factors influencing foam height in gas injection process was investigated including the blowing gas (N2 and air), particle content (5vol.%-15vol.%), gas flow rate (0.03m3/h-0.3m3/h) and orifice size (0.3mm and 0.5mm). Factors that contribute to the foam stability including oxygen in the blowing gas and larger particle content in the melt was proved to be positively related to the foam height. Moreover, it was found that larger gas flow rate and smaller orifice size lead to larger foam height. The cell wall microstructure and thickness was also analyzed to better understand the foaming behavior. The present study offers favorable proof that the foam height in the gas injection process can be a good index for the foam stability.


2018 ◽  
Vol 13 (4) ◽  
pp. 92-98 ◽  
Author(s):  
A.S. Chiglintseva ◽  
V.Sh. Shagapov

The mathematical model of the process of gas hydrate formation during gas injection into a snow massif, saturated with the same gas, is constructed. In axisymmetric formulation, analytical solutions are obtained for the distribution of temperature fields, pressures and phase saturations. It is shown that the appearance of various characteristic zones in a snow massif depends on the initial state of the gas–snow system, determined by temperature and pressure, and the mass flow rate of the injected gas. It has been established that an increase in the intensity of gas injection (gas flow rate) leads to an increase in both the length of the bulk zone of hydrate formation and the increase in the fraction of hydrate at the boundary separating the near and intermediate zones.


2011 ◽  
Vol 295-297 ◽  
pp. 1113-1119 ◽  
Author(s):  
Fang Jiang ◽  
Guo Guang Cheng

Physical model experiments have been performed to clarify the effect of hole distance and hole number of multi-hole orifices on bubble behavior during metal refining process. It is found kA/V firstly decreases and then increases with the hole distance increasing. However, kA/V shows little further increase when hole distance exceeds a critical value. There exists an optimal hole distance for the multi-hole orifice, which is dependent on the gas flow rate, the hole diameter and the hole number in the multi-hole orifice. kA/V firstly increases with the hole number increasing, and then remains unchanged when hole number exceeds a critical value. There also exists an optimal hole number for the multi-hole orifice, which is closely related to the gas flow rate.


Author(s):  
R. М. Kondrat ◽  
О. R. Kondrat ◽  
L. І. Khaidarova ◽  
N. М. Hedzyk

The development of gas deposits at the final stage is usually complicated by watering production wells. With the advent of water in the formation product, the gas production rate decreases due to the decrease in the gas-saturated thickness of the reservoirs and the increase in pressure loss during movement of the liquid-gas mixture in the wellbore and flow lines as compared to the movement of gas only. Well operation is gradually becoming unstable, periodic with the subsequent cessation of natural flowing. The methods of operation of flooded wells are characterized. The use of the gas-lift method for the operation of flooded gas wells in depleted gas fields is justified. The effect of tubing diameter, wellhead pressure and water factor on the parameters of gas-lift operation of flooded wells is investigated. The research is carried out using the improved technique proposed by the authors and the PipeSim program for hypothetical (simulated) well conditions. The studies performed are presented in the form of graphical dependences of the production rate of reservoir gas, the minimum required gas production rate for the liquid to be taken from the bottom of the well to the surface, lift gas flow rate and bottomhole pressure on wellhead pressure, diameter of tubing and water factor. The research results indicate a significant coincidence of the values ​​of the calculated parameters of the gas-lift operation of the watered well according to the proposed methods and the PipeSim program. Using the research results, it is possible to select the optimal diameter of the tubing string and evaluate the value of formation gas flow rate and gas-lift flow rates for various values ​​of water factor and wellhead pressure.


1993 ◽  
Vol 79 (5) ◽  
pp. 569-575 ◽  
Author(s):  
Manabu IGUCHI ◽  
Yutaka SUMIDA ◽  
Ryusuke OKADA ◽  
Zen-ichiro MORITA

1987 ◽  
Vol 98 ◽  
Author(s):  
J. E. Harry ◽  
D. R. Evans

ABSTRACTGlow discharges have been operated at power inputs of 25 kW at 50 mb and discharge currents up to 2 A at gas flow rates of up to 0.04 kg/s in a 100 mm diameter cavity 0.5 m long. This has been made possible by the use of multiple anodes and cathodes combined with gas injection at the porous anodes. Power loading in excess of 700 kW/kg/s have been achieved. The power density of the gas (W/m3) and the current at which the glow to arc transition occurs scaled with both the number of electrode pairs and the gas flow rate through the porous anodes over the range of investigation.


Sign in / Sign up

Export Citation Format

Share Document