scholarly journals Structural and Optical Properties for TiO2 thin films Prepared by Screen Printing method

2019 ◽  
Vol 24 (5) ◽  
pp. 76
Author(s):  
Hiba A. Abdulla1 ◽  
Abdulla M. Ali1 ◽  
Khaleel I. Hassoon2

In this study, Structural and Optical Properties of titanium dioxide thin films are studied, TiO2 (Anatase) thin films were prepared by screen printing (SP) method. X-ray diffraction analysis showed that the structure of TiO2 films are polycrystalline and the lattice system is tetragonal. The main diffraction peak of TiO2 was (101) at 2θ=25ᵒ.  The data of optical absorption indicated that TiO2 thin films prepared by SP have a direct optical band gap (about 3.1eV).  The data of reflectivity was also used to calculate the band gap and was around 2.95 eV   http://dx.doi.org/10.25130/tjps.24.2019.093

2005 ◽  
Vol 905 ◽  
Author(s):  
B. Yang ◽  
Y. M. Lu ◽  
C. Neumann ◽  
A. Polity ◽  
C. Z. Wang ◽  
...  

AbstractDelafossite-type CuAlO2 thin films have been deposited by radio frequency (RF) reactive sputtering on sapphire using a CuAlO2 ceramic target. A study of structural and optical properties was performed on films of varying deposition parameters such as substrate temperature and oxygen partial pressure and also post annealing. The crystalline phase in the films was identified to be the delafossite structure by x-ray diffraction. The optical properties, such as the wavelength dependence of the transmittance and the band gap, were determined. The average transmittance is 80% in the wavelength range of 400-1500 nm and the band gap is 3.81 eV.


2013 ◽  
Vol 537 ◽  
pp. 224-228
Author(s):  
Yi Liu ◽  
Hong Mo Huang ◽  
Xiao Dong Lin

TiO2 thin films were prepared on quartz glasses by pulsed laser deposition (PLD) using a KrF laser excimer. The crystalline structure was characterized by X-ray diffraction, and the optical properties of the films were investigated using spectroscopic ellipsometry and UV-vis spectra respectively. The effects of the PLD conditions, including substrate temperature and O2 pressure on the crystalline structure and the optical properties of the films were investigated. The results indicated that there are a suitable substrate temperature and an O2 pressure which is favorable for the synthesis of anatase-type TiO2.


2014 ◽  
Vol 938 ◽  
pp. 103-107
Author(s):  
V. Gowthami ◽  
M. Meenakshi ◽  
N. Anandhan ◽  
Chinnappanadar Sanjeeviraja

Nickel oxide has been widely used as material for antiferromagnetic, electrochromic display and functional layer for chemical sensors. Nickel oxide thin films of various molarities were deposited using a simple nebulizer technique and the substrate temperature was fixed at 350C. The effect of the molarity of precursor solution on structural and optical properties was studied using X-ray diffraction (XRD) and UV-Vis-NIR spectrometer techniques respectively. The band gap of the material was confirmed by photoluminescence spectrometer. It is found that increase in the molarity of 10ml volume of the sprayed solution leads to the increasing in film thickness. X-ray diffraction studies indicated cubic structure and the crystallites are preferentially oriented along (1 1 1) plane. It is also found that as the concentration of the solution increases the transmittance decreases, consequently the band-gap energy wanes from 4.0 eV to 3.2 eV.


2019 ◽  
Vol 19 (01) ◽  
pp. 1850046
Author(s):  
Mahboubeh Yeganeh ◽  
Maliheh Mousavi

In this work, the effects of Fe/Ni co-doping on structural and optical properties of TiO2 thin films were investigated by the X-ray diffraction, scanning electron microscope and UV-visible spectroscopy. The optical properties of transmittance, extinction coefficient, refractive index, real and imaginary parts of dielectric constant of the thin films, prepared by spray pyrolysis, revealed that the absorption in visible region increases due to the influence of Fe/Ni co-doping. The widening of the gap energies is observed as a result of doping. The increased optical gap as a consequence of doping can be explained by decreasing the size of nanoparticles, as confirmed by SEM and increasing the formation of oxygen vacancies as a result of Ni[Formula: see text] substitution to Ti[Formula: see text] and appearance of the Burstein–Moss effect.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1064
Author(s):  
Iosif-Daniel Simandan ◽  
Florinel Sava ◽  
Angel-Theodor Buruiana ◽  
Ion Burducea ◽  
Nicu Becherescu ◽  
...  

ZnS is a wide band gap material which was proposed as a possible candidate to replace CdS as a buffer layer in solar cells. However, the structural and optical properties are influenced by the deposition method. ZnS thin films were prepared using magnetron sputtering (MS), pulsed laser deposition (PLD), and a combined deposition technique that uses the same bulk target for sputtering and PLD at the same time, named MSPLD. The compositional, structural, and optical properties of the as-deposited and annealed films were inferred from Rutherford backscattering spectrometry, X-ray diffraction, X-ray reflectometry, Raman spectroscopy, and spectroscopic ellipsometry. PLD leads to the best stoichiometric transfer from target to substrate, MS makes fully amorphous films, whereas MSPLD facilitates obtaining the densest films. The study reveals that the band gap is only slightly influenced by the deposition method, or by annealing, which is encouraging for photovoltaic applications. However, sulphur vacancies contribute to lowering the bandgap and therefore should be controlled. Moreover, the results add valuable information towards the understanding of ZnS polymorphism. The combined MSPLD method offers several advantages such as an increased deposition rate and the possibility to tune the optical properties of the obtained thin films.


2012 ◽  
Vol 229-231 ◽  
pp. 10-13
Author(s):  
Liang Yan Chen ◽  
Chao Fang

ZnSe thin films were obtained through chemical bath deposition method. Structural and optical properties of as deposited and annealed samples were investigated by X-ray Diffraction and spectrophotometer. The as deposited thin films were in nanocrystalline, with lots of strain and a blue shift of optical band gap. After annealing, the crystal grain gained, the strain eased and optical band gap enlarged. And it suggested that annealing can ease the quantum effect of chemical bath deposited ZnSe thin films.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


2019 ◽  
Vol 93 (2) ◽  
pp. 273-280
Author(s):  
Shahid Khan ◽  
Mahmood ul Haq ◽  
Yecheng Ma ◽  
Mohammad Nisar ◽  
Youduo Li ◽  
...  

2019 ◽  
Vol 07 (01n02) ◽  
pp. 1950002
Author(s):  
Nadir Lalou ◽  
Ahmed Kadari

This work proposes the synthesis of nanocrystalline calcium oxide (CaO) pure and doped with different concentrations of lithium (Li[Formula: see text]) ions by sol–gel process. Calcium nitrate (Ca(NO[Formula: see text]4H2O; 99.99%) and lithium nitrate (LiNO3; 99.99%) were used as precursors. The synthesized powders were characterized by several techniques such as: UV-Vis transmission spectroscopy, Fourier Transform Infra-red spectroscopy (FT-IR) and X-ray diffraction (XRD). The main objective of this paper is to study the influence of lithium (Li[Formula: see text] ratio) on the structural and optical properties of synthesized powders. The band gap values decreased with the increasing of Li[Formula: see text] ions in CaO lattice; the slight change in the band gap was directly related to the energy transfer between the CaO excited states and the 2s levels of Li[Formula: see text] ions. The influence of Li[Formula: see text] doping on the physical properties of CaO nanocrystalline will be studied for the first time in this work; no literature has previously published this kind of impurities.


Sign in / Sign up

Export Citation Format

Share Document