Thermal Characterization of Copper Microchannel Heat Sink for Power Electronics Cooling

2009 ◽  
Vol 23 (2) ◽  
pp. 371-380 ◽  
Author(s):  
Randeep Singh ◽  
Aliakbar Akbarzadeh ◽  
Masataka Mochizuki ◽  
Thang Nguyen ◽  
Tien Nguyen
2001 ◽  
Author(s):  
G. Hetsroni ◽  
A. Mosyak ◽  
Z. Segal

Abstract Experimental investigation of a heat sink for electronics cooling is performed. The objective is to keep the operating temperature at a relatively low level of about 323–333K, while reducing the undesired temperature variation in both the streamwise and transverse directions. The experimental study is based on systematic temperature, flow and pressure measurements, infrared radiometry and high-speed digital video imaging. The heat sink has parallel triangular microchannels with a base of 250μm. According to the objectives of the present study, Vertrel XF is chosen as the working fluid. Experiments on flow boiling of Vertrel XF in the microchannel heat sink are performed to study the effect of mass velocity and vapor quality on the heat transfer, as well as to compare the two-phase results to a single-phase water flow.


1993 ◽  
Vol 115 (1) ◽  
pp. 101-105 ◽  
Author(s):  
J. W. M. Spicer ◽  
M. G. Bevan ◽  
W. D. Kerns ◽  
H. S. Feldmesser

A new thermal characterization technique, time-resolved infrared radiometry (TRIR), is used to investigate three different heat sink adhesive systems used in spacecraft electronics - a filled epoxy, a filled silicone and a tape adhesive. Measurements of heat sink efficiency are presented as a function of thermal cycling and the TRIR results are compared with ultrasonic and X-ray imaging techniques and with destructive analysis. The TRIR technique is shown to provide a measure of the relative heat sink capabilities of the different systems and can detect subsurface delamination in the filled epoxy system resulting from the development of cracks due to thermal cycling.


Author(s):  
Kevin P. Drummond ◽  
Doosan Back ◽  
Michael D. Sinanis ◽  
David B. Janes ◽  
Dimitrios Peroulis ◽  
...  

Author(s):  
Hui Lu ◽  
Liang Gong ◽  
Minghai Xu

The thermal management of integrated circuits becomes more and more serious since the density of transistors grows gradually. Recently, a new cooling method is dedicated to develop microchannel heat sink with high integrated and high cooling efficiency. In view of above purpose, the heat transfer enhancement and pressure drop reduction in microchannel with dimples are investigated in this paper. A single module of 1mm×1mm×20mm with a microchannel was employed, which hydraulic diameter and aspect ratio are 500 μm and 2:1 respectively. For replacing the running integrated circuits, a constant heat flux of 1W/mm2 was arranged on the bottom of the heat sink. Six different types of microchannels with dimples were designed and numerically studied under the condition of laminar flow. The results show that dimple could enhance heat transfer and decrease flow resistance under the condition of laminar flow. Compared with traditional microchannel heat sink, dimple-microchannel heat sink has stronger cooling capacity, could be an attractive choice for cooling of future microelectronics.


Author(s):  
Hemin Hu ◽  
Jiahui Zhang ◽  
Xiaoze Du ◽  
Lijun Yang

Liquid-cooled heat sink (cold plate) used for power electronics cooling is numerically studied. Thermal performance and hydraulic resistance are analyzed, with emphasis on geometric construction of cooling channels. Two heat transfer enhancing channel shapes are investigated, such as alternating elliptical channel and alternating rectangular channel (AR-C). Their performances are compared with that of three traditional straight channel shapes, as straight circular channel, straight elliptical channel, and straight rectangular channel. A heat sink with uniform and discrete heat sources is studied. Thermal and hydraulic characteristics in the heat sink are simulated using computational fluid dynamics approach, with water as coolant. The results show that the AR-C has the highest thermal performance with a little penalty on pressure drop, considering fixed channel hydraulic diameter and coolant volumetric flow rate. Geometry optimization is investigated for the AR-C, as well as the effect of channel density. It is found that higher channel density can improve both thermal performance and hydraulic resistance. It is concluded that alternating channel can improve cold plate performance and should be taken into application to power electronics cooling.


Sign in / Sign up

Export Citation Format

Share Document