Analysis of Liquid-Cooled Heat Sink Used for Power Electronics Cooling

Author(s):  
Hemin Hu ◽  
Jiahui Zhang ◽  
Xiaoze Du ◽  
Lijun Yang

Liquid-cooled heat sink (cold plate) used for power electronics cooling is numerically studied. Thermal performance and hydraulic resistance are analyzed, with emphasis on geometric construction of cooling channels. Two heat transfer enhancing channel shapes are investigated, such as alternating elliptical channel and alternating rectangular channel (AR-C). Their performances are compared with that of three traditional straight channel shapes, as straight circular channel, straight elliptical channel, and straight rectangular channel. A heat sink with uniform and discrete heat sources is studied. Thermal and hydraulic characteristics in the heat sink are simulated using computational fluid dynamics approach, with water as coolant. The results show that the AR-C has the highest thermal performance with a little penalty on pressure drop, considering fixed channel hydraulic diameter and coolant volumetric flow rate. Geometry optimization is investigated for the AR-C, as well as the effect of channel density. It is found that higher channel density can improve both thermal performance and hydraulic resistance. It is concluded that alternating channel can improve cold plate performance and should be taken into application to power electronics cooling.

Author(s):  
Hemin Hu ◽  
Jiahui Zhang ◽  
Xiaoze Du ◽  
Lijun Yang

In the paper, liquid-cooled heat sink (cold plate) used for power electronic cooling is numerically studied. Thermal and hydraulic performances are analyzed, with the emphasis on geometrical construction of cooling channels. Two heat transfer enhancing channel shapes are investigated, such as alternating elliptical channel (AE-C) and alternating rectangular channel (AR-C). Their performances are compared with that of three traditional straight channel shapes, as straight circular channel (SC-C), straight elliptical channel (SE-C), and straight rectangular channel (SR-C). Coolant pressure drop and heat sink surface temperature are calculated using computational fluid dynamics (CFD) approach, with water as coolant. It is found that, when channel hydraulic diameter and coolant volumetric flow rate are fixed, the heat sinks with alternating rectangular channel have the highest thermal performance with a little penalty on pressure drop. Geometry optimization is studied for AR-C. The effects of channel density are investigated, and it is found that higher channel density can improve both thermal and hydraulic performances. A case study is conducted for a heat sink with uniform and discrete heat sources. It is concluded that alternating channels provide excellent thermal performance and should be taken into application for cold plate.


2020 ◽  
Vol 319 ◽  
pp. 02004
Author(s):  
Muhammad Akif Rahman ◽  
Md Badrath Tamam ◽  
Md Sadman Faruque ◽  
A.K.M. Monjur Morshed

In this paper a numerical analysis of three-dimensional laminar flow through rectangular channel heat sinks of different geometric configuration is presented and a comparison of thermal performance among the heat sinks is discussed. Liquid water was used as coolant in the aluminum made heat sink with a glass cover above it. The aspect ratio (section height to width) of rectangular channels of the mini-channel heat sink was 0.33. A heat flux of 20 W/cm2 was continuously applied at the bottom of the channel with different inlet velocity for Reynold’s number ranging from 150 to 1044. Interconnectors and obstacles at different positions and numbers inside the channel were introduced in order to enhance the thermal performance. These modifications cause secondary flow between the parallel channels and the obstacles disrupt the boundary layer formation of the flow inside the channel which leads to the increase in heat transfer rate. Finally, Nusselt number, overall thermal resistance and maximum temperature of the heat sink were calculated to compare the performances of the modified heat sinks with the conventional mini channel heat sink and it was observed that the heat sink with both interconnectors and obstacles enhanced the thermal performance more significantly than other configurations. A maximum of 36% increase in Nusselt number was observed (for Re =1044).


2019 ◽  
Vol 33 (1) ◽  
pp. 41-45
Author(s):  
Eui-Hyeok Song ◽  
RIGUANG CHI ◽  
Dae-Gyeom Yu ◽  
Seok-Ho Rhi ◽  
Dong-Ju Lee ◽  
...  

2016 ◽  
Vol 12 (12) ◽  
pp. 4582-4587
Author(s):  
Arulmurugan Loganathan ◽  
Ilangkumaran Mani

An Experimental investigation on the thermal performance of copper with aluminium based finned heat sinks for electronics cooling system was studied. The heat sinks have different material proportions containing major constituent of aluminium and minor constituent of copper. Considered with straight finned heat sink for the experiments for its easiness in fabrication and efficient heat transfer properties. The observational results for aluminium with copper alloy are compared with pure aluminium heat sink.  Heat sink geometry, fin pitch and its height were taken from the commercially available heat sinks. In this research work best heat sink geometry is chosen and cooked up with different volume of copper added with aluminium. Selected four different spots of heat sinks and the temperature raising characteristics were measured for natural convection. also the temperature is raised to a fixed temperature and the temperature lowering characteristics were measured in forced convection as the air circulation takes more heat to keep the heat sink temperature within the desired level.


2009 ◽  
Vol 23 (2) ◽  
pp. 371-380 ◽  
Author(s):  
Randeep Singh ◽  
Aliakbar Akbarzadeh ◽  
Masataka Mochizuki ◽  
Thang Nguyen ◽  
Tien Nguyen

Author(s):  
Michael J. Ellsworth ◽  
Levi A. Campbell

When contemplating processor module cooling, the notion of maximum cooling capability is not simple or straight forward to estimate. There are a multitude of variables and constraints to consider; some more rigid or fixed than others. This paper proposes a theoretical maximum cooling capability predicated on the treatment of the module heat sink or cold plate as a heat exchanger with infinite conductive and convective behavior. The resulting theoretical minimum heat sink thermal resistance is a function of the bulk thermal transport of the fluid dependent only on the fluid’s density, specific heat (at constant pressure) and volumetric flow rate. An ideal module internal thermal resistance will also be defined. The sum of the two resistances constitutes the theoretical minimum total module thermal resistance and defines the ideal thermal performance of the module. Finally, a module cooling effectiveness relating the actual module thermal performance to the ideal thermal performance will defined. Examples of both air and water cooled modules will be given with discussion on the relevance and utility of this methodology.


Author(s):  
Özgür Özdilli ◽  
Seyfi Şevik

This study aims to achieve a minimum base temperature (or junction temperature) and hence better thermal performance. Trapezoidal curved plate-fin heat sink with dolphin fins and rectangular channel (Model-1) and trapezoidal curved plate-fin heat sink with dolphin fins, cut corner, and rectangular channel (Model-2) were designed and compared with a standard plate-fin heat sink. The effects of fins on the airflow and heat transfer in designed plate-fin heat sinks have been investigated numerically. The numeric results show that the use of fins and small changes in geometry significantly improve the heat transfer rate. Outcomes of the study showed 44–51% and 57–62% convective heat transfer enhancement compared with a standard plate-fin heat sink, without any overall mass augmentation, in Model-1 and Model-2, respectively. The presence of dolphin fins reduces the thermal resistance by up to 30%, which contributes to the overall thermal enhancement of the designed plate-fin heat sinks. Simulation results show that increasing the fins in areas close to the heat source and reducing the non-working areas significantly influence the thermal performance of heat sinks. The results also show that the trapeze plate-fin heat sinks with the different channel-fin geometries are superior to the standard trapeze plate-fin heat sink in thermal performance.


Author(s):  
Nicholas R. Jankowski ◽  
Brian C. Morgan ◽  
F. Patrick McCluskey

Recent power electronics cooling efforts have shown that bringing the cooling mechanism directly into the device substrate can achieve reduced package thermal resistance and reduced system pumping requirements while maintaining traditional circuit manufacturing processes. At the same time, it has been demonstrated that effective compact methods of managing electronic temperature excursions from brief power surges or other transient events include the use of a solid-liquid phase change material (PCM), but tight integration into the electronics package without degrading overall cooling has proven difficult. Recognizing that such a thermal buffer heat sink (TBHS) would enable lighter weight, more compact cooling hardware for vehicle power electronic modules, the U.S. Army Research Laboratory has developed a method for integrating and assembling a PCM-based TBHS within a power electronics substrate. The TBHS design builds upon both the author’s previous efforts in substrate integrated cooling and design trade studies sponsored by the Department of Energy. By fabricating the PCM cavities alongside the fluidic passages on the backside of a ceramic substrate, the PCM thermal bottleneck can be minimized, and a compact solution can be found. Low fabrication temperature limits imposed by the presence of an integrated PCM can be circumvented by using a room temperature curing silicone bonding layer for assembly. The prototype fabrication plan is presented along with steady and transient thermal models to verify performance of the integrated heatsink. A representative design is shown to have a steady state thermal resistivity of less than 0.4 cm2K/W, with the convective rate of the cooling fluid being the dominant factor. Transient analysis shows peak temperature suppression due to the effect of phase change heat absorption, including a 4°C reduction under a pulsed loading condition.


Sign in / Sign up

Export Citation Format

Share Document