Numerical tests of upwind scheme performance for entropy condition

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1005-1007
Author(s):  
Ge-Cheng Zha
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 662
Author(s):  
Joanna Jójka ◽  
Rafał Ślefarski

This paper details the experimental and numerical analysis of a combustion process for atmospheric swirl burners using methane with added ammonia as fuel. The research was carried out for lean methane–air mixtures, which were doped with ammonia up to 5% and preheated up to 473 K. A flow with internal recirculation was induced by burners with different outflow angles from swirling blades, 30° and 50°, where tested equivalence ratio was 0.71. The NO and CO distribution profiles on specified axial positions of the combustor and the overall emission levels at the combustor outlet were measured and compared to a modelled outcome. The highest values of the NO emissions were collected for 5% NH3 and 50° (1950 ppmv), while a reduction to 1585 ppmv was observed at 30°. The doubling of the firing rates from 15 kW up to 30 kW did not have any great influence on the overall emissions. The emission trend lines were not proportional to the raising share of the ammonia in the fuel. 3D numerical tests and a kinetic study with a reactor network showed that the NO outlet concentration for swirl flame depended on the recirculation ratio, residence time, wall temperature, and the mechanism used. Those parameters need to be carefully defined in order to get highly accurate NO predictions—both for 3D simulations and simplified reactor-based models.


2020 ◽  
Vol 28 (1) ◽  
pp. 15-32
Author(s):  
Silvia Gazzola ◽  
Paolo Novati

AbstractThis paper introduces and analyzes an original class of Krylov subspace methods that provide an efficient alternative to many well-known conjugate-gradient-like (CG-like) Krylov solvers for square nonsymmetric linear systems arising from discretizations of inverse ill-posed problems. The main idea underlying the new methods is to consider some rank-deficient approximations of the transpose of the system matrix, obtained by running the (transpose-free) Arnoldi algorithm, and then apply some Krylov solvers to a formally right-preconditioned system of equations. Theoretical insight is given, and many numerical tests show that the new solvers outperform classical Arnoldi-based or CG-like methods in a variety of situations.


2020 ◽  
Vol 8 (4) ◽  
Author(s):  
F Di Lauro ◽  
J-C Croix ◽  
L Berthouze ◽  
I Z Kiss

Abstract Stochastic epidemic models on networks are inherently high-dimensional and the resulting exact models are intractable numerically even for modest network sizes. Mean-field models provide an alternative but can only capture average quantities, thus offering little or no information about variability in the outcome of the exact process. In this article, we conjecture and numerically demonstrate that it is possible to construct partial differential equation (PDE)-limits of the exact stochastic susceptible-infected-susceptible epidemics on Regular, Erdős–Rényi, Barabási–Albert networks and lattices. To do this, we first approximate the exact stochastic process at population level by a Birth-and-Death process (BD) (with a state space of $O(N)$ rather than $O(2^N)$) whose coefficients are determined numerically from Gillespie simulations of the exact epidemic on explicit networks. We numerically demonstrate that the coefficients of the resulting BD process are density-dependent, a crucial condition for the existence of a PDE limit. Extensive numerical tests for Regular, Erdős–Rényi, Barabási–Albert networks and lattices show excellent agreement between the outcome of simulations and the numerical solution of the Fokker–Planck equations. Apart from a significant reduction in dimensionality, the PDE also provides the means to derive the epidemic outbreak threshold linking network and disease dynamics parameters, albeit in an implicit way. Perhaps more importantly, it enables the formulation and numerical evaluation of likelihoods for epidemic and network inference as illustrated in a fully worked out example.


Author(s):  
S Chahardoli ◽  
Mohammad Sheikh Ahmadi ◽  
TN Tran ◽  
Afrasyab Khan

This study examined the effect of the upper surface slope and the number of cells in the side beams on the collapse properties using experimental and numerical tests. The numerical studies were conducted with LS-DYNA software, and the accuracy of numerical results was investigated by experimental tests. Using MATLAB software, the second-degree polynomial functions were obtained for the collapse properties of the specimens. Also, after the optimization by the decomposition method, the best mode was introduced for the specimens. The studies on collapse properties showed that increasing the number of cells leads to a decrease in all collapse properties, and increasing the upper surface slope leads to an increase in the collapse properties. Moreover, the optimization results by decomposition method showed that this method could suggest the most optimal model for multi-cell and sloping beams.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Jan Nordström ◽  
Andrew R. Winters

AbstractWe prove that the most common filtering procedure for nodal discontinuous Galerkin (DG) methods is stable. The proof exploits that the DG approximation is constructed from polynomial basis functions and that integrals are approximated with high-order accurate Legendre–Gauss–Lobatto quadrature. The theoretical discussion re-contextualizes stable filtering results for finite difference methods into the DG setting. Numerical tests verify and validate the underlying theoretical results.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4010
Author(s):  
Grzegorz Banaszek ◽  
Teresa Bajor ◽  
Anna Kawałek ◽  
Tomasz Garstka

This paper presents the results of numerical tests of the process of forging magnesium alloy ingots (AZ91) on a hydraulic press with the use of flat and proprietary shaped anvils. The analysis of the hydrostatic pressure distribution and the deformation intensity was carried out. It is one of the elements used for determining the assumptions for the technology of forging to obtain a semi-finished product from the AZ91 alloy with good strength properties. The aim of the research was to reduce the number of forging passes, which will shorten the operation time and reduce the product manufacturing costs. Numerical tests of the AZ91 magnesium alloy were carried out using commercial Forge®NxT software.


2020 ◽  
Vol 28 (5) ◽  
pp. 659-676
Author(s):  
Dinh Nho Hào ◽  
Nguyen Van Duc ◽  
Nguyen Van Thang ◽  
Nguyen Trung Thành

AbstractThe problem of determining the initial condition from noisy final observations in time-fractional parabolic equations is considered. This problem is well known to be ill-posed, and it is regularized by backward Sobolev-type equations. Error estimates of Hölder type are obtained with a priori and a posteriori regularization parameter choice rules. The proposed regularization method results in a stable noniterative numerical scheme. The theoretical error estimates are confirmed by numerical tests for one- and two-dimensional equations.


Sign in / Sign up

Export Citation Format

Share Document