Wind tunnel investigation of the transonic aerodynamic characteristics of forward swept wings

1983 ◽  
Vol 20 (3) ◽  
pp. 195-202 ◽  
Author(s):  
G. C. Uhuad ◽  
T. M. Weeks ◽  
R. Large

2018 ◽  
Vol 245 ◽  
pp. 02001 ◽  
Author(s):  
Evgenii Khrapunov ◽  
Sergei Solovev

The main ideas of the aerodynamic studies of large bridges are presented in present paper. Main types of aero-elastic instability for bridges with spans over 100 meters are considered. A two-step modeling approach is presented. At the first stage, the aerodynamic characteristics of the span fragment are considered, at the second.stage the characteristics of the whole bridge. Methods for investigation of bridge oscillations in a special-purpose experimental facility – the Landscape Wind Tunnel – are described. Examples of tests with elastic similar models of bridges are given, and measurements to mitigate dangerous oscillations early in the bridge design process are described.



10.14311/530 ◽  
2004 ◽  
Vol 44 (2) ◽  
Author(s):  
A. V. Petrov ◽  
Y. G. Stepanov ◽  
M. V. Shmakov

This report presents the results of experimental investigations into the interaction between the propellers (Ps) and the airframe of a twin-engine, twin-boom light transport aircraft with a Π-shaped tail. An analysis was performed of the forces and moments acting on the aircraft with rotating Ps. The main features of the methodology for windtunnel testing of an aircraft model with running Ps in TsAGI’s T-102 wind tunnel are outlined.The effect of 6-blade Ps slipstreams on the longitudinal and lateral aerodynamic characteristics as well as the effectiveness of the control surfaces was studied on the aircraft model in cruise and takeoff/landing configurations. The tests were conducted at flow velocities of V∞ = 20 to 50 m/s in the ranges of angles of attack α =  -6 to 20 deg, sideslip angles of β = -16 to 16 deg and blade loading coefficient of B 0 to 2.8. For the aircraft of unusual layout studied, an increase in blowing intensity is shown to result in decreasing longitudinal static stability and significant asymmetry of the directional stability characteristics associated with the interaction between the Ps slipstreams of the same (left-hand) rotation and the empennage.



2021 ◽  
Author(s):  
Nasser Shelil

Abstract. The aerodynamic characteristics of DTU-LN221 airfoil is studied. ANSYS Fluent is used to simulate the airfoil performance with seven different turbulence models. The simulation results for the airfoil with different turbulence models are compared with the wind tunnel experimental data performed under the same operating conditions. It is found that there is a good agreement between the computational fluid dynamics (CFD) predicted aerodynamic force coefficients with wind tunnel experimental data especially with angle of attack between −5° to 10°. RSM is chosen to investigate the flow field structure and the surface pressure coefficients under different angle of attack between −5° to 10°. Also the effect of changing air temperature, velocity and turbulence intensity on lift and drag coefficients/forces are examined. The results show that it is recommended to operate the wind turbines airfoil at low air temperature and high velocity to enhance the performance of the wind turbines.



2014 ◽  
Vol 36 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Nguyen Hong Son ◽  
Hoang Thi Bich Ngoc ◽  
Dinh Van Phong ◽  
Nguyen Manh Hung

The report presents method and results of experiments in wind tunnel to determine aerodynamic characteristics of 3D wings by measuring pressure distribution on the wing surfaces. Simultaneously, a numerical method by using sources and doublets distributed on panel elements of wing surface also is carried out to calculate flows around 3D wings. This computational method allows solving inviscid problems for wings with thickness profile. The experimental and numerical results are compared to each other to verify the built program that permits to extend the range of applications with the variation of wing profiles, wing planforms, and incidence angles.



2021 ◽  
Vol 2103 (1) ◽  
pp. 012206
Author(s):  
V I Chernousov ◽  
A A Krutov ◽  
E A Pigusov

Abstract This paper presents the experiment results of modelling the one engine failure at the landing mode on a model of a light transport airplane in the T-102 TsAGI low speed wind tunnel. The effect of starboard and port engines failure on the aerodynamic characteristics and stability of the model is researched. The model maximum lift coefficient is reduced about ≈8% and there are the same moments in roll and yaw for starboard and port engines failure case. It was found that the failure of any engine has little impact on the efficiency of control surfaces. Approaches of compensation of forces and moments arising in the engine failure case were investigated.



1970 ◽  
Vol 52 (2) ◽  
pp. 345-367 ◽  
Author(s):  
VANCE A. TUCKER ◽  
G. CHRISTIAN PARROTT

1. A live laggar falcon (Falco jugger) glided in a wind tunnel at speeds between 6.6 and 15.9 m./sec. The bird had a maximum lift to drag ratio (L/D) of 10 at a speed of 12.5 m./sec. As the falcon increased its air speed at a given glide angle, it reduced its wing span, wing area and lift coefficient. 2. A model aircraft with about the same wingspan as the falcon had a maximum L/D value of 10. 3. Published measurements of the aerodynamic characteristics of gliding birds are summarized by presenting them in a diagram showing air speed, sinking speed and L/D values. Data for a high-performance sailplane are included. The soaring birds had maximum L/D values near 10, or about one quarter that of the sailplane. The birds glided more slowly than the sailplane and had about the same sinking speed. 4. The ‘equivalent parasite area’ method used by aircraft designers to estimate parasite drag was modified for use with gliding birds, and empirical data are presented to provide a means of predicting the gliding performance of a bird in the absence of wind-tunnel tests. 5. The birds in this study had conventional values for parasite drag. Technical errors seem responsible for published claims of unusually low parasite drag values in a vulture. 6. The falcon adjusted its wing span in flight to achieve nearly the maximum possible L/D value over its range of gliding speeds. 7. The maximum terminal speed of the falcon in a vertical dive is estimated to be 100 m./sec.



Vehicles ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 318-341
Author(s):  
Chen Fu ◽  
Mesbah Uddin ◽  
Chunhui Zhang

With the fast-paced growth of computational horsepower and its affordability, computational fluid dynamics (CFD) has been rapidly evolving as a popular and effective tool for aerodynamic design and analysis in the automotive industry. In the real world, a road vehicle is subject to varying wind and operating conditions that affect its aerodynamic characteristics, and are difficult to reproduce in a traditional wind tunnel. CFD has the potential of becoming a cost-effective way of achieving this, through the application of different boundary conditions. Additionally, one can view wind tunnel testing, be it a fixed-floor or rolling road tunnel, as a physical simulation of actual on-road driving. The use of on-road track testing, and static-floor, and rolling-road wind tunnel measurements are common practices in industry. Subsequently, we investigated the influences of these test conditions and the related boundary conditions on the predictions of the aerodynamic characteristics of the flow field around a vehicle using CFD. A detailed full-scale model of Hyundai Veloster with two vehicle configurations, one with the original and the other with an improved spoiler, were tested using a commercial CFD code STAR-CCM+ from Siemens. Both vehicle configurations were simulated using four different test conditions, providing overall eight different sets of simulation settings. The CFD methodology was validated with experimental data from the Hyundai Aero-acoustic Wind Tunnel (HAWT), by accurately reproducing the test section with static floor boundary conditions. In order to investigate the effect of the blockage ratio on the aerodynamic predictions, the vehicle models were then tested with moving ground plus rotating wheel boundary conditions, using a total of four virtual wind tunnel configurations, with tunnel solid blockage ratios ranging from 1.25%, which corresponds to the actual HAWT, to 0.04%, which presents an open air driving condition.



Sign in / Sign up

Export Citation Format

Share Document