Natural convection from isothermal spheroids in the conductive to laminar flow regimes

Author(s):  
M. YOVANOVICH
2002 ◽  
Vol 460 ◽  
pp. 181-209 ◽  
Author(s):  
CHENGWANG LEI ◽  
JOHN C. PATTERSON

The authors have previously reported a model experiment on the unsteady natural convection in a triangular domain induced by the absorption of solar radiation. This issue is reconsidered here both analytically and numerically. The present study consists of two parts: a scaling analysis and a numerical simulation. The scaling analysis for small bottom slopes reveals that a number of flow regimes are possible depending on the Rayleigh number and the relative value of certain non-dimensional parameters describing the flow. In a typical situation, the flow can be classified broadly into a conductive, a transitional or a convective regime determined merely by the Rayleigh number. Proper scales have been established to quantify the flow properties in each of these flow regimes. The numerical simulation has verified the scaling results.


2011 ◽  
Vol 54 (25-26) ◽  
pp. 5253-5261 ◽  
Author(s):  
El Hassan Ridouane ◽  
Darren L. Hitt ◽  
Christopher M. Danforth

Starting from the differential equation of mass transfer in laminar flow and the appropriate boundary condition, expressions are derived for the rate of mass transfer from ( a ) a flat plate in a longitudinal fluid stream, ( b ) a vertical flat plate by natural convection, ( c ) the forward stagnation point of a sphere in a fluid stream. Only outward mass transfer is considered; this corresponds to blowing outwards from the plate at a rate inversely proportional to the boundary-layer thickness. The Kármán-Pohlhausen-Kroujiline method is used. Where appropriate the Prandtl or Schmidt number has been taken as 0⋅71. The calculations are valid for all mass-transfer processes for which a single diffusion coefficient can be ascribed to the diffusing property, but are particularly relevant to the combustion of liquid fuels, for which the outward mass-transfer rates are so high that important deviations occur from boundary-layer profiles without mass transfer. Despite the great temperature variations present in boundary layers with combustion, mean values for the fluid properties are assumed. In the case of natural convection, it is assumed that the body forces on the fluid in the boundary layer are everywhere zero; this leads to a less serious over-estimate of the buoyancy than the usual assumptions which are valid only for small temperature differences.


Author(s):  
Si-pu Guo ◽  
Zhao-zan Feng ◽  
Ze-cong Fang ◽  
Wei Li ◽  
Jin-liang Xu ◽  
...  

Nanofluids are colloidal suspensions of nano-scale particles in water, or other base fluids. In this paper, the effect of natural convection on laminar flow of nanofluids in a horizontal tube has been addressed. The obtained experimental data could not be reconciled with existing correlations over a wide range of Prandtl number under laminar mixed convection. Three improved correlations have been derived by using single-phase fluid approach. These correlations fit our data to within ± 10 % and also agree with the data in literature quite well. Such results verify that nanofluids can be treated as a homogeneous mixture with effective thermophysical properties. Utimately, the new correlations have grasped the essence of natural convection and can reduce to both normal forced convection and pure natural convection equations at limiting cases.


1968 ◽  
Vol 10 (4) ◽  
pp. 363-366
Author(s):  
M. D. Wood

The note compares recently published versions of the governing gas film equations for slip-flow and turbulent flow with Reynolds equation for laminar flow. The comparison shows how approximate values of steady-state and dynamic performance parameters may be deduced for the new conditions from existing data.


Author(s):  
I A Konakhina ◽  
E M Khusnutdinova ◽  
A I Kadyirov ◽  
E K Vachagina

2004 ◽  
Vol 503 ◽  
pp. 161-170 ◽  
Author(s):  
B. GALLETTI ◽  
C. H. BRUNEAU ◽  
L. ZANNETTI ◽  
A. IOLLO

Sign in / Sign up

Export Citation Format

Share Document