Bias error reduction in experimental results by presentation as a ratio to a baseline experiment - A heat transfer case study

Author(s):  
WALID CHAKROUN ◽  
ROBERT TAYLOR ◽  
W. STEELE ◽  
HUGH COLEMAN
10.2514/3.495 ◽  
1993 ◽  
Vol 7 (4) ◽  
pp. 754-757 ◽  
Author(s):  
Walid Chakroun ◽  
Robert P. Taylor ◽  
W. G. Steele ◽  
Hugh W. Coleman

2020 ◽  
Vol 39 (3) ◽  
pp. 407-437
Author(s):  
Markus Bader

Abstract In German, a verb selected by another verb normally precedes the selecting verb. Modal verbs in the perfect tense provide an exception to this generalization because they require the perfective auxiliary to occur in cluster-initial position according to prescriptive grammars. Bader and Schmid (2009b) have shown, however, that native speakers accept the auxiliary in all positions except the cluster-final one. Experimental results as well as corpus data indicate that verb cluster serialization is a case of free variation. I discuss how this variation can be accounted for, focusing on two mismatches between acceptability and frequency: First, slight acceptability advantages can turn into strong frequency advantages. Second, syntactic variants with basically zero frequency can still vary substantially in acceptability. These mismatches remain unaccounted for if acceptability is related to frequency on the level of whole sentence structures, as in Stochastic OT (Boersma and Hayes2001). However, when the acceptability-frequency relationship is modeled on the level of individual weighted constraints, using harmony as link (see Pater2009, for different harmony based frameworks), the two mismatches follow given appropriate linking assumptions.


2021 ◽  
Vol 1845 (1) ◽  
pp. 012081
Author(s):  
Y Baskoro ◽  
I Jaya ◽  
A Glowacz ◽  
M Sulowicz ◽  
W Caesarendra

2021 ◽  
Vol 11 (15) ◽  
pp. 7169
Author(s):  
Mohamed Allouche ◽  
Tarek Frikha ◽  
Mihai Mitrea ◽  
Gérard Memmi ◽  
Faten Chaabane

To bridge the current gap between the Blockchain expectancies and their intensive computation constraints, the present paper advances a lightweight processing solution, based on a load-balancing architecture, compatible with the lightweight/embedding processing paradigms. In this way, the execution of complex operations is securely delegated to an off-chain general-purpose computing machine while the intimate Blockchain operations are kept on-chain. The illustrations correspond to an on-chain Tezos configuration and to a multiprocessor ARM embedded platform (integrated into a Raspberry Pi). The performances are assessed in terms of security, execution time, and CPU consumption when achieving a visual document fingerprint task. It is thus demonstrated that the advanced solution makes it possible for a computing intensive application to be deployed under severely constrained computation and memory resources, as set by a Raspberry Pi 3. The experimental results show that up to nine Tezos nodes can be deployed on a single Raspberry Pi 3 and that the limitation is not derived from the memory but from the computation resources. The execution time with a limited number of fingerprints is 40% higher than using a classical PC solution (value computed with 95% relative error lower than 5%).


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 595
Author(s):  
Mahir Faris Abdullah ◽  
Rozli Zulkifli ◽  
Hazim Moria ◽  
Asmaa Soheil Najm ◽  
Zambri Harun ◽  
...  

Impinging jets are considered to be a well-known technique that offers high local heat transfer rates. No correlation could be established in the literature between the significant parameters and the Nusselt number, and investigation of the interactions between the correlated factors has not been conducted before. An experimental analysis based on the twin impingement jet mechanism was achieved to study the heat transfer rate pertaining to the surface plate. In the current paper, four influential parameters were studied: the spacing between nozzles, velocity, concentration of Nano solution coating and nozzle-plate distance, which are considered to be effective parameters for the thermal conductivity and the heat transfer coefficient of TiO2 nanoparticle, an X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis were done, which highlighted the structure and showed that the nanosolution coated the surface homogenously. Moreover, a comparison was done for the experimental results with that of the predicted responses generated by the Design Expert software, Version 7 User’s Guide, USA. A response surface methodology (RSM) was employed to improve a mathematical model by accounting for a D-optimal design. In addition, the analysis of variance (ANOVA) was employed for testing the significance of the models. The maximum Nu of 91.47, where H = S = 1 cm; Reynolds number of 17,000, and TiO2 nanoparticle concentration of 0.5% M. The highest improvement rate in Nusselt was about 26%, achieved with TiO2 Nanoparticle, when S = 3 cm, H = 6 cm and TiO2 nanoparticle = 0.5 M. Furthermore, based on the statistical analysis, the expected values were found to be in satisfactory agreement with that of the empirical data, which was conducted by accounting for the proposed models’ excellent predictability. Multivariate approaches are very useful for researchers, as well as for applications in industrial processes, as they lead to increased efficiency and reduced costs, so the presented results of this work could encourage the overall uses of multivariate methods in these fields. Hypotheses: A comparison was done for the predicted responses generated by the Design Expert software with the experimental results and then studied to verify the following hypotheses: ► Preparation of three concentrations of TiO2 nanosolution was done and studied. ► The heat transfer rate could be increased by surface coating with TiO2 nanoparticle. ► The heat transfer could be improved by the impingement jet technique with suitable adjustments.


Sign in / Sign up

Export Citation Format

Share Document