Characterization of the gust response and its sensitivity for a typical section aeroelastic model

Author(s):  
Jeffrey Layton
2012 ◽  
Vol 116 (1180) ◽  
pp. 651-666 ◽  
Author(s):  
D. Muro ◽  
M. Molica Colella ◽  
J. Serafini ◽  
M. Gennaretti

Abstract The alleviation of gusts effects on a tiltrotor in aeroplane and helicopter operation modes obtained by an optimal control methodology based on the actuation of elevators, wing flaperons and swashplate is examined. An optimal observer for state estimate is included in the compensator synthesis, with the Kalman-Bucy filter applied in the presence of stochastic noise. Tiltrotor dynamics is simulated through an aeroelastic model that couples rigid-body motion with wing and proprotor structural dynamics. An extensive numerical investigation examines effectiveness and robustness of the applied control procedure, taking into account the action of both deterministic and stochastic vertical gusts. In addition, a passive pilot model is included in the aeroelastic loop and the corresponding effects on uncontrolled and controlled gust response are analysed.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yuting Dai ◽  
Chao Yang

A unified autoregressive (AR) model is identified, based on the wind tunnel test data of open-loop gust response for an aircraft model. The identified AR model can be adapted to various flow velocities in the wind tunnel test. Due to the lack of discrete gust input measurement, a second-order polynomial function is used to approximate the gust input amplitude by flow velocity. Afterwards, with the identified online aeroelastic model, the modified generalized predictive control (GPC) theory is applied to alleviate wing tip acceleration induced by sinusoidal gust. Finally, the alleviation effects of gust response at different flow velocities are estimated based on the comparison of simulated closed-loop acceleration with experimental open-loop one. The comparison indicates that, after gust response alleviation, the wing tip acceleration can be reduced up to 20% at the tested velocities ranging from 12 m/s to 24 m/s. Demonstratively, the unified control law can be adapted to varying wind tunnel velocities and gust frequencies. It does not need to be altered at different test conditions, which will save the idle time.


Author(s):  
Thomas Vanneste ◽  
Alexandre Bontemps ◽  
Xiao Qing Bao ◽  
Se´bastien Grondel ◽  
Jean-Bernard Paquet ◽  
...  

This paper reports our recent progresses on the conception of polymer-based flapping-wing robotic insect, which involves the design, fabrication and characterization of novel all-polymer wing as well as their aeroelastic simulation. Accomplished MEMS technology allows the production of artificial wing with complex geometry as well as complete prototype with material mimicking the insect one. Key innovation of our design is the flexible resonant wing on an active bending mode coupled with passive torsion. Structural optimizations are reported aiming to increase the wing kinematics and the associated aerodynamic forces. Simultaneously to improve prediction and optimization of wing aerodynamic performance, a novel aeroelastic model is introduced using finite element method coupled with the quasi-steady analysis of insect flight. Although only basic wing shapes are here considered, the aeroelastic model exhibits promising capabilities for the evaluation of more realistic wing.


2011 ◽  
Vol 115 (1174) ◽  
pp. 767-777 ◽  
Author(s):  
M. Y. Harmin ◽  
J. E. Cooper

Abstract A procedure for developing efficient aeroelastic reduced order models (ROMs) for aerospace structures containing geometric nonlinearities is described. The structural modelling is based upon a combined modal/FE approach that describes the non-linear stiffening effects from results of non-linear static analyses for a range of prescribed inputs. Once the structural ROM has been defined, it is coupled to the rational fraction approximation of the doublet lattice aerodynamic model corresponding to the wing planform. The aeroelastic model can then be used to predict the dynamic aeroelastic behaviour of the defined structure. The methodology is demonstrated on the aeroelastic model of a flexible high aspect ratio wing with the static deflections, LCO behaviour and gust response being predicted.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document