scholarly journals A Mass Computation Model for Light Weight Brayton Cycle Regenerator Heat Exchangers

Author(s):  
Albert Juhasz
Author(s):  
Anton Moisseytsev ◽  
Qiuping Lv ◽  
James J. Sienicki

The capability to utilize dry air cooling by which heat is directly rejected to the air atmosphere heat sink is one of the benefits of the supercritical carbon dioxide (sCO2) energy conversion cycle. For the selection and analysis of the heat exchanger options for dry air cooling applications for the sCO2 cycle, two leading forced air flow design approaches have been identified and analyzed for this application; an air cooler consisting of modular finned tube air coolers; and an air cooler consisting of modular compact diffusion-bonded heat exchangers. The commercially available modular finned tube air cooler is found to be more cost effective and is selected as the reference for dry air cooling.


Author(s):  
L Chen ◽  
J Zheng ◽  
F Sun ◽  
C Wu

The power density is taken as an objective for performance analysis of an irreversible closed Brayton cycle coupled to variable-temperature heat reservoirs. The analytical formulas about the relationship between power density and working fluid temperature ratio (pressure ratio) are derived with the heat resistance losses in the hot- and cold-side heat exchangers, the irreversible compression and expansion losses in the compressor and turbine, and the effect of the finite thermal capacity rate of the heat reservoirs. The obtained results are compared with those results obtained by using the maximum power criterion. The influences of some design parameters, including the temperature ratio of the heat reservoirs, the effectivenesses of the heat exchangers between the working fluid and the heat reservoirs, and the efficiencies of the compressor and the turbine, on the maximum power density are provided by numerical examples, and the advantages and disadvantages of maximum power density design are analysed. The power plant design with maximum power density leads to a higher efficiency and smaller size. When the heat transfers between the working fluid and the heat reservoirs are carried out ideally and the thermal capacity rates of the heat reservoirs are infinite, the results of this article become similar to those obtained in the recent literature.


2001 ◽  
Vol 08 (04) ◽  
pp. 377-391 ◽  
Author(s):  
Lingen Chen ◽  
Junlin Zheng ◽  
Fengrui Sun ◽  
Chih Wu

In this paper, the power density, defined as the ratio of power output to the maximum specific volume in the cycle, is set as the objective for performance analysis of an irreversible, regenerated and closed Brayton cycle coupled to constant-temperature heat reservoirs from the viewpoint of finite time thermodynamics (FTT) or entropy generation minimization (EGM). The analytical formulae about the relations between power density and pressure ratio are derived with the heat resistance losses in the hot- and cold-side heat exchangers and the regenerator, the irreversible compression and expansion losses in the compressor and turbine, and the pressure loss in the pipe. The results obtained are compared with those obtained by using the maximum power criterion. The influences of some design parameters, including the effectiveness of the regenerator, the temperature ratio of heat reservoirs, the effectivenesses of heat exchangers between working fluid and heat reservoirs, the efficiencies of the compressor and the turbine, and the pressure recovery coefficient, on the maximum power density are illustrated by numerical examples, and advantages and disadvantages of maximum power density design are analyzed. When heat transfers between working fluid and heat reservoirs are carried out ideally, the results of this paper coincide with those obtained in recent literature.


Author(s):  
S. V. Gunn ◽  
J. R. McCarthy

Under contract from the Department of Energy, Rocketdyne is developing the technology of coal-fired gas heaters for utilization in Brayton-cycle cogeneration systems. The program encompasses both atmospheric fluidized bed and pulverized coal combustion systems; and it is directed toward the development of gas heater systems capable of delivering high pressure air or helium at 1550 F, when employing metallic heat exchangers, and 1750 F, when employing ceramic heat exchangers. This paper reports on the development status of the program, with discussions of the completed “screening” corrosion/erosion tests of candidate heat exchanger materials, a description and summary of the operating experience with the 6- by 6-foot AFB test facility and a projection of the potential for relatively near term commercialization of such heater systems.


Carbon ◽  
2011 ◽  
Vol 49 (14) ◽  
pp. 4820-4829 ◽  
Author(s):  
James G. Hemrick ◽  
Edgar Lara-Curzio ◽  
Erick R. Loveland ◽  
Keith W. Sharp ◽  
Robert Schartow

Author(s):  
P. Avran ◽  
A. Soudarev ◽  
B. Soudarev ◽  
V. Soudarev

Results of an experimental study with a support of DRET (France) of two designs of liquid heat exchangers made of multi-channel aluminium tubes are presented with the objective to develop a fuel-oil recuperator, compact and light (less than 3 Kg). It was demonstrated that the application of a combined approach to heat exchange enhancements using three-dimensional turbulators as semi-spherical craters and bulges on channel walls of internal paths allows to increase the specific heat output of the heat exchanger from 10.5 to 13.3 kW/kg.


Author(s):  
Sarah Tioual-Demange ◽  
Gaëtan Bergin ◽  
Thierry Mazet ◽  
Luc de Camas

Abstract The sCO2-4-NPP european project aims to develop an innovative technology based on supercritical CO2 (sCO2) for heat removal to improve the safety of current and future nuclear power plants. The heat removal from the reactor core will be achieved with multiple highly compact self-propellant, self-launching, and self-sustaining cooling system modules, powered by a sCO2 Brayton cycle. Heat exchangers are one of the key components required for advanced Brayton cycles using supercritical CO2. Fives Cryo company, a brazed plates and fins heat exchangers manufacturer, with its expertise in thermal and hydraulic design and brazing fabrication is developing compact, and highly efficient stainless steel heat exchanger solution for sCO2 power cycles, thanks to their heat exchange capability with low pinch and high available flow sections. The aim of the development of this specific heat exchanger technology is to achieve an elevated degree of regeneration. For this matter, plates and fins heat exchanger is a very interesting solution to meet the desired thermal duty with low pressure drop leading to a reduction in size and capital cost. The enhancement of the mechanical integrity of plates and fins heat exchanger equipment would lead to compete with, and even outweigh, printed circuit heat exchangers technology, classically used for sCO2 Brayton cycles. sCO2 cycle conditions expose heat exchangers to severe conditions. Base material selection is essential, and for cost reasons, it is important to keep affordable heat-resistant austenitic stainless steel grades, much cheaper than a nickel-based alloy. Another advantage of high compactness of plates and fins heat exchangers is the diminution of the amount of material used in the heat exchanger manufacturing, decreasing even more its cost. The challenge here is to qualify stainless steel plates and fins heat exchangers mechanical resistance, at cycle operating conditions, and meet with pressure vessels codes and regulations according to nuclear requirements. One critical point in the development of the heat exchangers is the design of the fins. As secondary surface, they allow the maximization of heat transfer at low pressure drop. At the same time mechanical strength has to be guaranteed. To withstand high pressure, fins thickness has to be significant, which makes the implementation complicated. Efforts were dedicated to successfully obtain an optimal shape. Forming of fins was therefore improved compared to conventional techniques. Important work was undertaken to define industrial settings to flatten the top of the fins leading to a maximum contact between the brazing alloy and the fins. Consequently brazed joints quantity is minimized inducing a diminution of the presence of eutectic phase, which is structurally brittle and limits the mechanical strength of the construction. A metallurgical study brings other elements leading to the prevention of premature rupture of the brazed structure. The idea is to determine an optimized solidification path and to identify a temperature range and holding time where the brazed joint is almost free of eutectic phase during the assembly process in the vacuum furnace.


2001 ◽  
Vol 08 (03) ◽  
pp. 241-260 ◽  
Author(s):  
Lingen Chen ◽  
Junlin Zheng ◽  
Fengrui Sun ◽  
Chih Wu

In this paper, the power density, defined as the ratio of power output to the maximum specific volume in the cycle, is taken as objective for performance optimization of an irreversible closed Brayton cycle coupled to constant-temperature heat reservoirs in the viewpoint of finite time thermodynamics (FTT) or entropy generation minimization (EGM). The analytical formulas about the relations between power density and pressure ratio are derived with the heat resistance losses in the hot- and cold-side heat exchangers and the irreversible compression and expansion losses in the compressor and turbine. The maximum power density optimization is performed by searching the optimum heat conductance distribution corresponding to the optimum power density of the hot- and cold- side heat exchangers for the fixed heat exchanger inventory. The influence of some design parameters on the optimum heat conductance distribution, the maximum power density, and the optimum pressure ratio corresponding to the maximum power density are provided. The power plant design with optimization leads to a higher efficiency and smaller size including the compressor, turbine, and the hot- and cold-side heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document