Optimization of an Actuation System for Articulated Missiles

2022 ◽  
Author(s):  
Mackenzie Tidball ◽  
Richard Beblo ◽  
Tizoc Cruz-Gonzalez ◽  
Geoffrey Frank
Keyword(s):  
Author(s):  
Juan Sebastian Cuellar ◽  
Dick Plettenburg ◽  
Amir A Zadpoor ◽  
Paul Breedveld ◽  
Gerwin Smit

Various upper-limb prostheses have been designed for 3D printing but only a few of them are based on bio-inspired design principles and many anatomical details are not typically incorporated even though 3D printing offers advantages that facilitate the application of such design principles. We therefore aimed to apply a bio-inspired approach to the design and fabrication of articulated fingers for a new type of 3D printed hand prosthesis that is body-powered and complies with basic user requirements. We first studied the biological structure of human fingers and their movement control mechanisms in order to devise the transmission and actuation system. A number of working principles were established and various simplifications were made to fabricate the hand prosthesis using a fused deposition modelling (FDM) 3D printer with dual material extrusion. We then evaluated the mechanical performance of the prosthetic device by measuring its ability to exert pinch forces and the energy dissipated during each operational cycle. We fabricated our prototypes using three polymeric materials including PLA, TPU, and Nylon. The total weight of the prosthesis was 92 g with a total material cost of 12 US dollars. The energy dissipated during each cycle was 0.380 Nm with a pinch force of ≈16 N corresponding to an input force of 100 N. The hand is actuated by a conventional pulling cable used in BP prostheses. It is connected to a shoulder strap at one end and to the coupling of the whiffle tree mechanism at the other end. The whiffle tree mechanism distributes the force to the four tendons, which bend all fingers simultaneously when pulled. The design described in this manuscript demonstrates several bio-inspired design features and is capable of performing different grasping patterns due to the adaptive grasping provided by the articulated fingers. The pinch force obtained is superior to other fully 3D printed body-powered hand prostheses, but still below that of conventional body powered hand prostheses. We present a 3D printed bio-inspired prosthetic hand that is body-powered and includes all of the following characteristics: adaptive grasping, articulated fingers, and minimized post-printing assembly. Additionally, the low cost and low weight make this prosthetic hand a worthy option mainly in locations where state-of-the-art prosthetic workshops are absent.


Author(s):  
Sameh Fathey Shelan ◽  
Mohammed Abozied Hassan ◽  
Hossam Hendy ◽  
Yehia Zakarya Elhalwagy

2021 ◽  
Vol 11 (6) ◽  
pp. 2752
Author(s):  
Conchin Contell Asins ◽  
Volker Landersheim ◽  
Dominik Laveuve ◽  
Seiji Adachi ◽  
Michael May ◽  
...  

In order to contribute to achieving noise and emission reduction goals, Fraunhofer and Airbus deal with the development of a morphing leading edge (MLE) as a high lift device for aircraft. Within the European research program “Clean Sky 2”, a morphing leading edge with gapless chord- and camber-increase for high-lift performance was developed. The MLE is able to morph into two different aerofoils—one for cruise and one for take-off/landing, the latter increasing lift and stall angle over the former. The shape flexibility is realised by a carbon fibre reinforced plastic (CFRP) skin optimised for bending and a sliding contact at the bottom. The material is selected in terms of type, thickness, and lay-up including ply-wise fibre orientation based on numerical simulation and material tests. The MLE is driven by an internal electromechanical actuation system. Load introduction into the skin is realised by span-wise stringers, which require specific stiffness and thermal expansion properties for this task. To avoid the penetration of a bird into the front spar of the wing in case of bird strike, a bird strike protection structure is proposed and analysed. In this paper, the designed MLE including aerodynamic properties, composite skin structure, actuation system, and bird strike behaviour is described and analysed.


2021 ◽  
Vol 11 (4) ◽  
pp. 412
Author(s):  
Daniel Gomez-Vargas ◽  
Felipe Ballen-Moreno ◽  
Patricio Barria ◽  
Rolando Aguilar ◽  
José M. Azorín ◽  
...  

Robotic devices can provide physical assistance to people who have suffered neurological impairments such as stroke. Neurological disorders related to this condition induce abnormal gait patterns, which impede the independence to execute different Activities of Daily Living (ADLs). From the fundamental role of the ankle in walking, Powered Ankle-Foot Orthoses (PAFOs) have been developed to enhance the users’ gait patterns, and hence their quality of life. Ten patients who suffered a stroke used the actuation system of the T-FLEX exoskeleton triggered by an inertial sensor on the foot tip. The VICONmotion capture system recorded the users’ kinematics for unassisted and assisted gait modalities. Biomechanical analysis and usability assessment measured the performance of the system actuation for the participants in overground walking. The biomechanical assessment exhibited changes in the lower joints’ range of motion for 70% of the subjects. Moreover, the ankle kinematics showed a correlation with the variation of other movements analyzed. This variation had positive effects on 70% of the participants in at least one joint. The Gait Deviation Index (GDI) presented significant changes for 30% of the paretic limbs and 40% of the non-paretic, where the tendency was to decrease. The spatiotemporal parameters did not show significant variations between modalities, although users’ cadence had a decrease of 70% of the volunteers. Lastly, the satisfaction with the device was positive, the comfort being the most user-selected aspect. This article presents the assessment of the T-FLEX actuation system in people who suffered a stroke. Biomechanical results show improvement in the ankle kinematics and variations in the other joints. In general terms, GDI does not exhibit significant increases, and the Movement Analysis Profile (MAP) registers alterations for the assisted gait with the device. Future works should focus on assessing the full T-FLEX orthosis in a larger sample of patients, including a stage of training.


2003 ◽  
Vol 4 (3) ◽  
pp. 163-177 ◽  
Author(s):  
P. A. Caton ◽  
A. J. Simon ◽  
J. C. Gerdes ◽  
C. F. Edwards

Studies have been conducted to assess the performance of homogeneous charge compression ignition (HCCI) combustion initiated by exhaust reinduction from the previous engine cycle. Reinduction is achieved using a fully flexible electrohydraulic variable-valve actuation system. In this way, HCCI is implemented at low compression ratio without throttling the intake or exhaust, and without preheating the intake charge. By using late exhaust valve closing and late intake valve opening strategies, steady HCCI combustion was achieved over a range of engine conditions. By varying the timing of both valve events, control can be exerted over both work output (load) and combustion phasing. In comparison with throttled spark ignition (SI) operation on the same engine, HCCI achieved 25–55 per cent of the peak SI indicated work, and did so at uniformly higher thermal efficiency. This was accompanied by a two order of magnitude reduction in NO emissions. In fact, single-digit (ppm) NO emissions were realized under many load conditions. In contrast, hydrocarbon emissions proved to be significantly higher in HCCI combustion under almost all conditions. Varying the equivalence ratio showed a wider equivalence ratio tolerance at low loads for HCCI.


Sign in / Sign up

Export Citation Format

Share Document