Numerical Investigation of Adiabatic Behaviour of Guided Waves in a Honeycomb Composite Sandwich Structure

2022 ◽  
Author(s):  
Aurovinda K. Mitra ◽  
Dhanashri Joglekar
2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


2011 ◽  
Vol 46 (12) ◽  
pp. 1417-1430 ◽  
Author(s):  
Yu-Ti Jhan ◽  
Ya-Jung Lee ◽  
Cheng-Hsien Chung

2021 ◽  
Vol 2101 (1) ◽  
pp. 012087
Author(s):  
Peng Hao ◽  
Lin’an Li ◽  
Jianxun Du

Abstract In order to research the impact mechanical response characteristics of the bio-inspired composite sandwich structure, the hemispherical impactor is preloaded with different energy to impact bio-inspired and conventional composite sandwich structure, the stress distribution and dynamic response characteristics of composite sandwich structure under impact load are studied. The results show that the main damage of the upper panel is fiber shear fracture, while crushing fracture for the core, and the main damage of the lower panel is fiber tensile tearing under different impact load. The bio-inspired composite sandwich structure shows better impact resistance in terms of damage depth and maximum impact load under the same impact energy. From the perspective of energy consumption, the bio-inspired structure absorbed more energy than conventional structure under high energy impact.


2020 ◽  
Vol 18 ◽  
pp. 228080002094271
Author(s):  
Jing Chen ◽  
Wenxing Li ◽  
Qiang Li ◽  
Yuhui Wang ◽  
Bingjiao Zhao ◽  
...  

This study reported about the fabrication of dentin non-collagenous proteins (dNCPs) polyelectrolyte multilayers and evaluated its osteogenic potential. The composite sandwich structure of dNCPs polyelectrolyte multilayers was generated on the surface of polycaprolactone electrospinning membranes by the Layer-by-Layer self-assembly technique. The dNCPs-coated membranes comprised the experimental group and the non-coated membranes acted as the control. Nanofiber morphologies of both membranes were observed under scanning electron microscope. The release of dNCPs was evaluated by ELISA kit. Periodontal ligament stem cells (PDLSCs) were seeded on both membranes. The morphology changes and proliferation of cells were tested. The expressions of osteogenic-related genes and proteins were evaluated by RT-PCR, alkaline phosphatase (ALP) activity assay, and immunofluorescence staining. dNCPs-coated membranes displayed significantly different fiber morphology than the non-coated membranes. A stable release of dentin phosphoprotein was maintained from day 4 to day 15 in the experimental group. Cells on dNCPs-coated membranes were found to have cuboidal or polygonal shapes. The proliferative rate of cells was significantly lower in the experimental group from day 4 to day 9 ( p<0.05). However, cells on the dNCPs-coated membranes demonstrated a significantly higher ALP content and expression levels of osteogenic gene and proteins than the controls ( p<0.05). These results indicated that dNCPs polyelectrolyte multilayers could induce the osteogenic differentiation of PDLSCs in vitro.


Sign in / Sign up

Export Citation Format

Share Document