scholarly journals Impact assessment of interlayers on geological storage of carbon dioxide in Songliao Basin

Author(s):  
Deping Zhang ◽  
Chengkai Fan ◽  
Dongqin Kuang

Reservoirs in the Songliao Basin are characterized by strong heterogeneity, which increases the difficulty of exact reservoir prediction. The clay interlayer developed in the reservoir is an important factor affecting the heterogeneity of the reservoir. Using the reservoir numerical simulation technology, an attempt has been made to investigate the storage efficiency during CO2 sequestration in Songliao Basin considering different types of interlayer in underground formations. Results indicate that type I interlayer, with a large thickness embedded between the two sand bodies has function of shunting and blocking to alleviate the impacts on cap rock. The type II interlayer has a small thickness and locates inside a single sand body, with poor physical properties and continuity, which has the same blocking effect on CO2 distribution and moderating influence on the cap rock. The physical properties of type III interlayer are same as the type II interlayer, but it has uneven distribution and poor continuity. In addition, three schemes of perforated zone were designed and their effects on CO2 storage efficiency and stability were studied. For a single reservoir, the scheme I is to perforate a whole reservoir, which is more conducive to maintain the reservoir’s stability. For multiple sets of “single-reservoir”, the scheme II can be preferentially selected to perforate the reservoir section below the interlayer when the injection volume is small. However, the scheme III can be used to perforate the interlayer and the reservoir below that when the injection volume is large. The study is beneficial to provide guidance and advice for selecting a suitable CO2 geological storage and reduce the risk of CO2 leakage.

1983 ◽  
Vol 209 (3) ◽  
pp. 587-595 ◽  
Author(s):  
L C Gruen ◽  
E F Woods

The alpha-helix-rich particle of Mr 50 200, derived by limited alpha-chymotryptic digestion of the solubilized microfibrillar proteins from wool alpha-keratin, consists mainly of polypeptide-chain segments of Mr 12 500 (fraction ChC) and 25 000 (fraction ChB). The 12 500-Mr segments are of two types (I and II), which are derived from different polypeptide chains of the microfibrillar complex. Each of these type-I and type-II segments partially self-associates in benign solvents to form either dimers or tetramers. When mixed, the two segments show changes in physical properties (alpha-helix content, difference spectra and molecular weight) indicative of complex-formation. The maximum changes occur when the two segments are mixed in an equimolar ratio. Complexes isolated after rapid dialysis of mixtures from 8 M-urea solution were examined by various methods. A tetrameric structure is the main product formed in all cases, and the maximum amount of tetramer is obtained from equimolar mixtures of the type-I and type-II polypeptides. When urea is removed by dialysis from the unfractionated 12 500-Mr segments (fraction ChC) or from the alpha-helix-rich particle itself, a similar complex of Mr 50 000 is formed. The physical properties of these reconstituted entities (alpha-helix content, molecular weight, thermal stability and exposure of tyrosine residues) are similar to those of the original alpha-helix-rich particle. Cross-linking experiments with dimethyl suberimidate are in agreement with a four-chain complex for the reassembled structures. A pair of double-stranded alpha-helices is proposed for the particle, and is considered to be an integral part of the microfibrillar complex in wool alpha-keratin.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yong jun Ahn ◽  
Viktor Jahnke ◽  
Hyun-Sik Jeong ◽  
Kyung-Sun Lee ◽  
Mitsuhiro Nishida ◽  
...  

Abstract We clarify general mathematical and physical properties of pole-skipping points. For this purpose, we analyse scalar and vector fields in hyperbolic space. This setup is chosen because it is simple enough to allow us to obtain analytical expressions for the Green’s function and check everything explicitly, while it contains all the essential features of pole-skipping points. We classify pole-skipping points in three types (type-I, II, III). Type-I and Type-II are distinguished by the (limiting) behavior of the Green’s function near the pole-skipping points. Type-III can arise at non-integer iω values, which is due to a specific UV condition, contrary to the types I and II, which are related to a non-unique near horizon boundary condition. We also clarify the relation between the pole-skipping structure of the Green’s function and the near horizon analysis. We point out that there are subtle cases where the near horizon analysis alone may not be able to capture the existence and properties of the pole-skipping points.


Author(s):  
Eoin G Murphy ◽  
Nicolas E Regost ◽  
Yrjo H Roos ◽  
Mark A Fenelon

The physical properties of 12 commercially available infant milk formula (IMF) and follow-on (FO) powders were assessed. Polarised light micrographs of powders revealed that two types of powders existed: Type I - homogenous mixtures of milk powder particles and Type II – heterogeneous mixtures of milk powder particles and tomahawk-shaped a-lactose monohydrate crystals. Conventionally employed correlations between particle size, flowability and compressibility were found to be highly dependent on the presence of crystalline lactose in powders. Overall, results showed the importance of micro-structural evaluation during analysis of physical properties of dairy powders and, in particular, IMF/FO powders. Keywords: max. Infant formula;  microstructure; physical properties


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xuefei Lu ◽  
Fengjuan Dong ◽  
Xiaolong Wei ◽  
PengTao Wang ◽  
Na Liu ◽  
...  

Tight sandstone reservoirs have the characteristics of poor physical properties, fine pore throats, and strong microheterogeneity compared with conventional reservoirs, which results in complicated movable fluid occurrence laws and difficult mining. Taking the tight sandstone gas reservoir of He 8 formation in Sulige gas field as an example, based on physical property test analysis, constant velocity mercury injection, and nuclear magnetic resonance experiments, an optimized gray correlation calculation model is established by improved gray correlation theory, which quantitatively characterizes the influence of microscopic pore structure parameters of different types of tight sandstone gas reservoirs on the occurrence of movable fluids, and the main controlling microgeological factors for the occurrence of movable fluid in tight sandstone gas reservoirs with close/similar physical properties are selected. The results show that the occurrence of movable fluid in Type I reservoirs is mainly affected by the effective pore-throat radius ratio, the saturation of mercury in the total throat, and the effective pore radius, and the occurrence of movable fluid in Type II reservoirs is mainly affected by the effective throat radius per unit volume and total throat mercury saturation and mainstream throat radius. Moreover, the occurrence state of movable fluids in Type II reservoirs is controlled by the throat radius stronger than that of Type I reservoirs. It has important guiding significance for the efficient development of tight sandstone gas reservoirs.


2021 ◽  
Vol 236 ◽  
pp. 03014
Author(s):  
Ji Xianwei

During the sedimentary period of Saertu reservoir on the western slope of the northern Songliao basin, delta front and shore-shallow lake subfacies are mainly developed, which have the characteristics of few sandstone layers and thin single layer thickness. The lithology of thin layer or thin interlayer can not be distinguished clearly by seismic response on conventional seismic section, and it is difficult to identify them. Geophysical response characteristics of channel sand bodies are defined by well-seismic combination. Under the guidance of seismic sedimentology, the qualitative and quantitative prediction of channel sand bodies is carried out by using 90°-phase conversion, stratal slicing and waveform indication inversion techniques. The results show that the seismic reflection axis is symmetrical with respect to the top and bottom surface of sandstone, and the channel sand body has obvious characteristics and completely corresponds to wave peak reflection. The channel bodies of S1 and S23 reservoir formation are separated respectively into two stages by using the amplitude attributes of stratal slices, and the coincidence rate of reservoir prediction to wells is 78%~84%, with an average of 79.7%. The waveform indicator inversion technique is used to predict the channel sand body thickness of the four stages, and the error of sand body thickness to well is 0~1.6m, with an average of 0.32m.


Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 84 ◽  
Author(s):  
Eoin G. Murphy ◽  
Nicolas E. Regost ◽  
Yrjö H. Roos ◽  
Mark A. Fenelon

The physical properties of 15 commercially available infant formulas (IF) and follow-on (FO) formulas were analysed. Powders made with intact milk proteins were classified into two groups; Type I—homogenous mixtures of milk powder particles (n = 6); and Type II—heterogeneous mixtures of milk powder particles and tomahawk-shaped α-lactose monohydrate crystals (n = 6). Powders made using hydrolysed proteins were classified as Type III powders (n = 3). Type II powders exhibited similar flow characteristics to Type I powders despite having significantly (p < 0.05) smaller particle size, lower circularity, and greater elongation. Type III powders exhibited lowest particles size, highest surface free fat, and poorest flow properties (p < 0.05 for all). Upon reconstitution of powders (12.5% w/w), no significant difference (p < 0.05) in apparent viscosity was observed between Type I and II powders. Reconstituted Type III powders had relatively poor stability to separation compared to Type I and II powders, caused by large starch granules and/or poor emulsification by hydrolysed proteins. Overall, this study illustrated the range of physical behaviour and structures present in commercial IF powders. In particular, the effect of dry addition of lactose and the hydrolysis of protein were found to have major effects on physical properties.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


Sign in / Sign up

Export Citation Format

Share Document